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Abstract. In this study, the singular boundary method (SBM) is employed for the 

simulation of nonlinear Klein-Gordon equation with initial and Dirichlet-type boundary 

conditions. The 𝜃-weighted and Houbolt finite difference method is used to discretize the time 

derivatives. Then the original equations are split into a system of partial differential 

equations. A splitting scheme is applied to split the solution of the inhomogeneous governing 

equation into homogeneous solution and particular solution. To solve this system, the method 

of particular solution in combination with the singular boundary method is used for 

particular solution and homogeneous solution, respectively. Finally, several numerical 

examples are provided and compared with the exact analytical solutions to show the accuracy 

and efficiency of method in comparison with other existing methods. 

Keywords: nonlinear Klein-Gordon equation; singular boundary method (SBM); 

method of particular solution; fundamental solution. 

 

 

 

1. INTRODUCTION  

 

 

Many phenomena in applied sciences and engineering are made models by nonlinear 

partial differential equations (PDEs). In general, there are no practical methods for solving 

nonlinear PDEs and finding analytical solutions. Thus, numerical methods are important for 

solving nonlinear PDEs. Various numerical methods have been used to finding the 

approximation solution of engineering problems. Compared with the finite element method 

(FEM), finite volume method (FVM) and boundary element method (BEM) [1], meshfree 

methods are applied to set up system of algebraic equations for entire problem domain with 

no need to meshing of the domain discretization in order to use a set of points scattered inside 

the domain of the problem such as sets of points on the boundaries of the domain to show the 

domain of the problem and its boundaries. Moreover, some meshless methods are on the basis 

of collocation approaches(strong forms) like the meshless collocation method based on radial 

basis func-tions (RBFs) [2-6] and some other kinds of meshfree methods regarding weak 

forms and hybrid of collocation approach and weak forms, like element free Galerkin (EFG) 

[7] and meshless local Petrov-Galerkin (MLPG) [8]. Another approach has been utilized for 

approximated solution of differential equations is spectral collocation method like the spectral 

meshless radial point interpolation (SMRPI) method [9] the point interpolation method by 

means of the RBFs is employed to form shape functions. Against to the domain-type meshless 

approaches as methods based on collocation approaches, there are some boundary-type 
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methods like method of fundamental solutions (MFS), boundary collocation method (BCM), 

regularized meshless method (RMM) and boundary knot method (BKM) [10-11]. This family 

of boundary-type meshfree methods are very attractive which no need meshing domain and 

boundary. 

The Klein-Gordon equation is a relativistic version of the Schrdinger equation 

describing free particles, which was proposed by Oskar Klein and Walter Gordon. It has many 

applications in Physics and Engineering such as quantum field theory, relativistic physics, 

dispersive wave-phenomena, plasma physics and nonlinear optics. The Klein-Gordon 

equation is an important class of partial differential equations and arises in relativistic 

quantum mechanics and field theory, which is of great importance for the high-energy 

physicists, and is used to model many different phenomena, including the propagation of 

dislocations in crystals and the behavior of elementary particles. Finding accurate and 

efficient methods for solving such Klein-Gordon equation has been an active research 

undertaking. 

In this work, we employ the singular boundary method (SBM) for solving nonlinear 

Klein-Gordon equation as: 

 

utt + βut + G(u) = α∆u + f(x, t), x ∈ Ω ⊂ R
2
, t > 0, (1)  

 

with initial conditions 
 

u(x, 0) = 𝑔1 (x), x ∈ Ω, (2)  

 
𝜕𝑢(x,𝑡)

𝜕𝑡
|𝑡 = 0 = 𝑔2(𝑥), x ∈ Ω (3)  

 

and Dirichlet-type boundary condition 
 

u(x, t) = h(x, t), x ∈ ∂Ω, (4)  

 

where Ω is a domain of R
2
, x is the space variable, t is the time variable, u(x, t) is the 

unknown function, G(u) is a nonlinear function of u with different types of nonlinearities, 

f(x,t) is a given function, 𝑔1 (x) and 𝑔2 (x), are prescribed initial functions, α and β are known 

constants and h(x, t) is a given function for boundary ∂Ω. 

In special case, this equation is called Sine-Gordon equation that for some forms of 

G(u) such as: sin(u), sin(u) + sin(2u) , sinh(u) + sinh(2u) and exp(u) that characterizes the 

sine-Gordon, the double sine-Gordon, the double sinh-Gordon and Liouvile equations, 

respectively. The equation with nonlinear term as G(u) = γ1u + γ2u
m

 is called  as the Klein-

Gordon equation with quadratic nonlinearity if m = 2 and with cubic nonlinearity if m = 3. 

W. Chen and his coworkers proposed the singular boundary method (SBM) as a 

meshfree boundary collocation method [12-14]. The SBM straightly applies the fundamental 

solutions as basis functions and it removes the artificial boundary that is used in the MFS. The 

major idea in the SBM is to present the notion of origin intensity factors (OIFs) to omit the 

singularities of fundamental solutions on the adaptation of the source points and collocation 

points upon physical boundary of domain. The SBM is easy in mathematically speaking, 

simple for programming, accurate and free of integration, more enforceable for problems on 

complicated shapes with high dimension domains, less time-consuming than the boundary 

element method (BEM) and at the same time keeps away the fictitious boundary in the MFS 

and becomes numerically more stable than the MFS because condition number of its 

interpolation matrix is better [15-17]. As well as the MFS and BEM, the SBM acts when the 
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fundamental solution of the determined problem is attainable [18]. The important notion of 

the SBM is to utilize the OIF to substitute the singular integration in the BEM to achieve 

accurate numerical consequences, while keeping high numerical stability also less 

computation load. Specially, the SBM can achieve to high accurate numerical results 

employing very few boundary points and small CPU time. So far, the three ways have been 

extended to calculate the OIFs. The first approach is named the inverse interpolation 

technique (IIT), in numerical form, calculates OIFs. The second technique is to conclude the 

analytical formula for evaluating unknown OIFs. And the third one is empirical approach to 

determining OIFs. In this paper, subtracting and adding-back (SAB) technique is a popular 

approach to calculate the OIFs. In recent years, some famous problems are solved by SBM 

[19-23]. 

The structure of this article is organized as follows: In Section 2, we express briefly 

mathematical preliminaries and numerical implementation of the method. In Section 3, the 

time discretization and implementation steps of the method are presented. Some numerical 

examples are examined for show the accuracy of the method, and results are reported in 

Section.4. Finally, concluding remarks are given in the last section. 

 

 

2. A BRIEF REVIEW OF METHODOLOGY AND MATHEMATICAL 

PRELIMINARIES 

 

 

In this section we present a numerical process for calculating the particular solution 

and homogeneous solution. For approximation particular solution and homogeneous solution 

we used MPS and SBM, respectively. 

 

 

2.1. METHOD OF PARTICULAR SOLUTIONS (MPS) 

 

 

An important family of problem dependent radial basis functions are particular 

solutions [24]. By application of splitting scheme, the solution of the inhomogeneous 

governing equation split into homogeneous solution and particular solution. The key subject 

is to make the particular solutions to satisfy the governing equation. 

Consider the boundary value problem as follows: 

 

Lu(x) = ψ(x), x ∈  Ω,  (5)  

 

Bu(x) = ω(x), x ∈  Γ, (6)  

 

where L is a differential operator and B is a boundary differential operator. Also, ψ and ω are 

given functions, Ω is the inner region and Γ = ∂Ω is the boundary of the computational 

domain. 

Suppose {xi }
N

i=1 be the set of interpolation points containing Ni interior points in Ω 

and Nb boundary points on Γ, so N = Ni + Nb. Let up be a particular solution of Eq.(5), then it 

satisfies. 

 

L𝑢𝑝 (x) = ψ(x), x ∈  Ω, (7)  
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but does not necessarily need to satisfy the boundary condition. If 𝑢𝑝in Eq.(7) can be 

achieved, then the original equation in Eq.(5) and Eq.(6) can be changed into the following 

homogeneous equation via the variable substitution 𝑢ℎ= u – 𝑢𝑝, namely 

 

Luh(x) = 0, x ∈  Ω (8)  

 

Buh(x) = ω(x) − Bup(x), x ∈  Γ, (9)  

 

The homogeneous equation Eq.(8) with condition (9) can be solved by employing 

boundary methods. The mentioned numerical approach for solving PDEs is completely 

standard equipped when the particular solution and fundamental solution are both attainable. 

Finally, the solution of Eq.(5) and Eq.(6) can be achieved by summation of particular solution 

and homogeneous solution as follows: 

 

𝑢 = 𝑢𝑝 + 𝑢ℎ. 

 

By MPS, for approximating the variable 𝜓 by a linear superposition of the radial basis 

functions(RBFs), we assume the solution to Eq.(5) and Eq.(6) can be approximated by a 

linear superposition of the corresponding particular solutions of the given radial basis function 

like 𝜙, such as 

 

𝜓(x) = ∑ 𝛼𝑗

𝑁

𝑗 = 1

𝜙 (||x − x𝑗||). (10)  

 

where ||. || is the Euclidean norm and 𝛼𝑗 are unknown coefficients, therefore, an 

approximated particular solution 𝑢𝑝 to Eq.(7) is given by 

 

𝑢𝑝(x) = ∑ 𝛼𝑗

𝑁

𝑗 = 1

𝛷 (||x − x𝑗||). (11)  

where 

𝔏𝛷 = 𝜙. (12)  

 

 

2.2. PARTICULAR SOLUTION FOR MODIFIED HELMHOLTZ EQUATION 

 

 

In this work, we employ Polyharmonic splines of higher order or generalized thin 

plate spline(GTPS) as radial basis functions, described as: 

 

𝜙(𝑟) = 𝑟𝑚ln(𝑟).  𝑚 = 2.4.6. . . . 𝑖𝑛 𝑅2. (13)  

 

For modified Helmholtz operator as: 𝔏 = 𝛥 − 𝜇2 and considering Eq.(12) and Eq.(13) 

we obtain: 

(𝛥 − 𝜇2)𝛷(𝑟) = 𝜙(𝑟). (14)  
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where 𝛥 denotes the Laplace operator. Finally, we get 

 

𝛷(𝑟) = −
1

𝜇2
∑(

𝛥

𝜇2
)
𝑖

𝑚
2

𝑖=1

. 𝑟𝑚ln(𝑟) −
(𝑚)!!2

𝜇𝑚+2
𝐾0(𝜇𝑟). 

(15)  

 

where 𝑟 is the Euclidean norm between the point x and the origin. Function 𝐾0(. ) is the 

Bessel function of the second kind of order zero. 

For TPS 𝜙(𝑟) = 𝑟2ln(𝑟) , means 𝑚 = 2 in Eq.(15) the corresponding particular 

solution is: 

 

𝛷(𝑟) =

{
 
 

 
 −

𝑟2ln(𝑟)

𝜇2
−
4

𝜇4
(1 + ln(𝑟) + 𝐾0(𝜇𝑟)). 𝑟 ≠ 0

4

𝜇4
(−1 + 𝛾 + ln (

𝜇

2
)) . 𝑟 = 0

 (16)  

 

and for polyharmonic splines of order 2, 𝜙(𝑟) = 𝑟4ln(𝑟). in 𝑅2, the corresponding particular 

solution is: 

 

𝛷(𝑟) =

{
 
 

 
 −

𝑟4ln(𝑟)

𝜇2
−
8𝑟2

𝜇4
(2ln(𝑟) + 1) −

1

𝜇6
(96 + 64ln(𝑟) + 64𝐾0(𝜇𝑟)). 𝑟 ≠ 0

1

𝜇6
(−96 + 64𝛾 + 64ln(

𝜇

2
)) . 𝑟 = 0

 (17)  

 

In (16) and (17) constant 𝛾, is the Euler constant equal to:  

  

𝛾 = 0.57721566490153286… 

 

Remark 2.1. For calculating Laplace of 𝑢𝑝 we can conclude: 

 

𝛥𝑢𝑝(x) = ∑ 𝛼𝑗

𝑁

𝑗 = 1

𝛥𝛷(𝑟𝑗). 

and 

𝛥𝛷(𝑟𝑗) = 𝜇
2𝛷(𝑟𝑗) + 𝜙(𝑟𝑗), 

 

finally, by merging two above equations we get: 

 

𝛥𝑢𝑝(x) = ∑ 𝛼𝑗

𝑁

𝑗 = 1

(𝜇2𝛷(𝑟𝑗) + 𝜙(𝑟𝑗)). 
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2.3. SINGULAR BOUNDARY METHOD (SBM) 

 

 

The SBM belongs to the family of boundary-type meshless method based on the 

singular fundamental solution that uses as the basis function of its approximation expansion. 

Compared with the MFS, the source points of the SBM are located upon the physical 

boundary that are coincided with collocation points while in MFS the source points are 

located over a fictitious boundary. The major idea in the Singular boundary method (SBM) is 

to present the notion of origin intensity factors(OIFs) to omit the singularities of fundamental 

solutions on the adaptation of the collocation and source points on physical boundary of 

domain. 

Consider the homogenous PDE with the following conditions: 

 

{

𝔏𝑢 = 0 x ∈ 𝛺 ⊂ 𝑅𝑛

𝑢 = 𝑔0(x) x ∈ 𝛤𝐷

𝑞(x) =
𝜕𝑢(x)

𝜕n
= 𝑔1(x). x ∈ 𝛤𝑁

 (18)  

 

that 𝔏 is a partial differential operator, 𝐧 is the unit outward normal vector, 𝛺 denotes the 

computational domain that it is a bounded and connected known domain, 𝛤𝐷 and 𝛤𝑁 illustrate 

the Dirichlet boundary(essential) and the Neumann boundary(natural) conditions, 𝛤𝐷 ∪ 𝛤𝑁 =
𝜕𝛺 and 𝛤𝐷 ∩ 𝛤𝑁 = ⌀, that 𝜕𝛺 represents the whole physical boundary. Also, functions 𝑔0 and 

𝑔1 are given known functions. 

If 𝐺(x) be the fundamental solution of the operator in Eq.(18), for field points x𝑖 and 

source points s𝑗, approximation of 𝑢 and 𝑞 are: 

 

𝑢(x𝑖) =∑𝛼𝑗

𝑁

𝑗=1

𝐺(x𝑖 . s𝑗).    x ∈ 𝛺 − 𝛤𝐷 (19)  

 

𝑢(x𝑖) = ∑ 𝛼𝑗

𝑁

𝑗=1,𝑖≠𝑗

𝐺(x𝑖 . s𝑗) + 𝛼𝑖𝑢𝑖𝑖 .  x ∈ 𝛤𝐷 (20)  

 

𝑞(x𝑖) = ∑ 𝛼𝑗

𝑁

𝑗=1,𝑖≠𝑗

𝜕𝐺(x𝑖 . s𝑗)

𝜕n
+ 𝛼𝑖𝑞𝑖𝑖 .  x ∈ 𝛤𝑁 (21)  

 

where N is the number of source points and 𝛼𝑗 is the j-th unknown coefficient. Singularities of 

the fundamental solution 𝐺 will occur when x𝑖 = s𝑗. To eliminate this problem, the SBM 

recommends the notion of origin intensity factors (OIFs). The method places all computing 

points on the same physical boundary. So the source points {s𝑗} and the collocation points {x𝑖} 

are the same set of boundary nodes. When x𝑖 = s𝑗, we use origin intensity factors (OIFs) 

replacing the singular terms in formulation. Where 𝑢𝑖𝑖 and 𝑞𝑖𝑖 are defined as the OIFs 

corresponding to the fundamental solutions and the unit outward normal of fundamental 

solutions, namely, the diagonal elements of the SBM interpolation matrix. Therefore, to solve 

all kinds of physical and mechanical problems, the main issue is to specify the OIFs. The 

origin intensity factor is numerically assigned by a technique, where a sample solution 𝑢𝑠 
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satisfying the governing equation are imperative, and some sample points y
𝑘
 are located 

inside of the physical domain. 

By using subtracting and adding-back(SAB) technique, SBM interpolation formula for 

boundary condition can be regularized accurately. The origin intensity factor is numerically 

determined , where a sample solution 𝑢𝑠 satisfying the governing equation are imperative, and 

some sample points y
𝑘
 are located inside the physical domain. 

Replacing the sample points y
𝑘
 with the boundary collocation points x𝑖, the SBM 

interpolation matrix of the diffusion problem can be written as 

 

𝑢𝑠(x𝑖) = ∑ 𝛽𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝐺(x𝑖 . s𝑗) + 𝛽𝑗𝑢𝑖𝑖 . (22)  

and 

𝜕𝑢𝑠(x𝑖)

𝜕n
= ∑ 𝛽𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝜕𝐺(x𝑖 . s𝑗)

𝜕n
+ 𝛽𝑗𝑞𝑖𝑖 . (23)  

 

It is noted that only the origin intensity factors 𝑢𝑖𝑖 and 𝑞𝑖𝑖 are unknown in the above 

equation. Thus, the origin intensity factors can be calculated via 

 

𝑢𝑖𝑖 =
1

𝛽𝑗
[𝑢𝑠(x𝑖) − ∑ 𝛽𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝐺(x𝑖 . s𝑗)]. (24)  

and 

𝑞𝑖𝑖 = −
1

𝐿𝑖
∑ 𝐿𝑗

𝑁

𝑗=1,𝑗≠𝑖

𝜕𝐺0(x𝑖 . s𝑗)

𝜕𝑛𝑠
. (25)  

 

where 𝐿𝑖 is the half length of the curve between source points s𝑖−1 and s𝑖+1. Also 𝐺0 is the 

fundamental solution of the Laplace equation in 2D. 

It is noted that the sample points y
𝑘
 do not coincide with the source points s𝑗, and the 

sample points number should not be fewer than the physical boundary source node number. 

Finally, the approximated solution is: 

 

𝑢(x) = ∑ 𝛼𝑗

𝑁

𝑗=1 .𝑖≠𝑗

𝐺(x. s𝑗) + 𝛼𝑖𝑢𝑖𝑖 .  (26)  

 

that, Eq.(26) is the solution of equation Eq.(18). 

It is emphasized that the source intensity factors only depends on the distribution of 

the source points, the fundamental solution of the governing equation and the boundary 

conditions. Theoretically speaking, the source intensity factors remain unchanged with 

different sample solutions. Therefore, by employing mentioned technique, we circumvent the 

singularity of the fundamental solution upon the coincidence of the source and collocation 

points. 

 

Remark 2.2. For the Laplace equation on 2D domain, as 

 

𝛥𝑢(x) = 0,  x ∈ 𝛺 
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fundamental solution can be written as: 

 

𝐺(x. s𝑗) = −
1

2𝜋
ln(𝑟(x.s𝑗)) = −

1

2𝜋
ln(‖x− s𝑗‖2).  x ∈ 𝑅2 

 

Remark 2.3. For the modified Helmholtz equation on a two-dimensional domain, as 

 

(𝛥 − 𝜇2)𝑢(x) = 0.  x ∈ 𝛺 
 

fundamental solution can be written as: 

 

𝐺(x . s𝑗) = −
1

2𝜋
𝐾0(𝜇𝑟(x , s𝑗)) = −

1

2𝜋
𝐾0(𝜇‖x− s𝑗‖2).  x ∈ 𝑅2 

 

Remark 2.4. Relation between OIFs of Laplace and modified Helmholtz operators is shown 

that the origin intensity factors OIFs) of the two-dimensional modified Helmholtz equation 

are relevant with the OIFs of the Laplace equation as following relations: 

 

𝑢𝑖𝑖 = 𝑢𝐿
𝑖𝑖 −

1

2𝜋
ln (

𝜇

2
) −

𝛾

2𝜋
. 

 

𝑞𝑖𝑖 = 𝑞𝐿
𝑖𝑖 . 

 

where 𝑢𝐿
𝑖𝑖 are OIFs in Dirichlet boundary conditions and 𝑞𝐿

𝑖𝑖 are OIFs in Neumann boundary 

conditions of the Laplace equation. Also, 𝛾 is the Euler constant. 

 

 

3. FINITE DIFFERENCES FOR TIME DISCRETIZATION  

 

 

In this section, by introducing a uniformly partitioned time mesh, the procedure of 

time discretization based on the Houbolt finite-difference relation will be used for 

approximation of the first-order and second-order derivative on time variable of the main 

equation at two successive time levels 𝑘 and 𝑘 + 1. 

Let 𝜏 = 𝑡𝑘+1 − 𝑡𝑘 be the constant length of the time steps and 𝑡𝑘 = 𝑘𝜏. For any 

𝑡𝑘 ≤ 𝑡 ≤ 𝑡𝑘+1: 

 

𝜕𝑢𝑘+1

𝜕𝑡
 ≅  

11𝑢𝑘+1 − 18𝑢𝑘 + 9𝑢𝑘−1 − 2𝑢𝑘−2

6𝜏
. (27)  

 

𝜕2𝑢𝑘+1

𝜕𝑡2
 ≅  

2𝑢𝑘+1 − 5𝑢𝑘 + 4𝑢𝑘−1 − 𝑢𝑘−2

𝜏2
. (28)  

 

that 𝑢𝑘 = 𝑢(x , 𝑘𝜏). 
 

Also, we employ 𝜃-method(0 ≤ 𝜃 ≤ 1) for the following approximation as 

 

𝛥𝑢(x.𝑡) ≅  𝜃𝛥𝑢𝑘+1(x)  + (1 − 𝜃)𝛥𝑢𝑘(x). 
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In special case, if 𝜃 =
1

2
 the Crank-Nicolson technique is: 

 

𝛥𝑢(x. 𝑡) ≅
𝛥𝑢𝑘+1(x)  + 𝛥𝑢𝑘(x)

2
. (29)  

 

where 𝛥𝑢𝑘(x)  = 𝛥𝑢(x, 𝑘 𝜏) is the Laplacian operator. 
 

By replacing Eq.(15)-(17) in Eq.(1), the main equation can be described as: 

 

 
2𝑢𝑘+1−5𝑢𝑘+4𝑢𝑘−1−𝑢𝑘−2

𝜏2
+ 𝛽

11𝑢𝑘+1−18𝑢𝑘+9𝑢𝑘−1−2𝑢𝑘−2

6𝜏
+ 𝐺(𝑢𝑘) = 𝛼

𝛥𝑢𝑘+1 +𝛥𝑢𝑘

2
+
𝑓𝑘+1+𝑓𝑘

2
.  

 

then 

 

𝛥𝑢𝑘+1 − 𝜇2𝑢𝑘+1 = −𝛥𝑢𝑘 + 𝐶0𝑢
𝑘 + 𝐶1𝑢

𝑘−1 + 𝐶2𝑢
𝑘−2 +

2

𝛼
𝐺(𝑢𝑘) + 𝐹𝑘+1.  (30)  

 

where 

𝜇2 =
4

𝛼𝜏2
+
11𝛽

3𝛼𝜏
. 

and 

 

𝐶0 = −
10

𝛼𝜏2
−
6𝛽

𝛼𝜏
. 𝐶1 =

8

𝛼𝜏2
+
3𝛽

𝛼𝜏
. 𝐶2 = −

2

𝛼𝜏2
−
2𝛽

3𝛼𝜏
. 𝐹𝑘+1 = −

𝑓𝑘+1 + 𝑓𝑘

𝛼
. 

 

If the right hand side of Eq.(18) demonstrated as a function like 𝑏𝑘(x), it can be 

rewritten as modified Helmholtz equation as follows: 

 

(𝛥 − 𝜇2)𝑢𝑘+1(x) = 𝑏𝑘(x).  (31)  

where 

 

𝑏𝑘(x) = −𝛥𝑢𝑘 + 𝐶0𝑢
𝑘 + 𝐶1𝑢

𝑘−1 + 𝐶2𝑢
𝑘−2 +

2

𝛼
𝐺(𝑢𝑘) + 𝐹𝑘+1. (31)  

 

Notice that in the above equation for 𝑢−1 and 𝑢−2 we use Euler scheme and problem 

conditions as follows: 

𝑢−1 − 𝑢0

𝜏
= 𝑔2(x). 

and 

𝑢−2 − 𝑢0

2𝜏
= 𝑔2(x). 

 

that by using initial condition  𝑢0 = 𝑔1(x) we have: 

 

𝑢−1 = 𝑔1(x) − 𝜏. 𝑔2(x). 
and 

𝑢−2 = 𝑔1(x) − 2𝜏. 𝑔2(x). 
and finally: 
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𝑏0(x) = −𝛥𝑔1(x) + 𝐶0𝑔1(x) + 𝐶1(𝑔1(x) − 𝜏. 𝑔2(x)) + 𝐶2(𝑔1(x) − 2𝜏. 𝑔2(x))

+
2

𝛼
𝐺(𝑔1(x)) + 𝐹

1. 

 

 

4. NUMERICAL EXAMPLES 

 

 

In this section we present four examples that numerical solutions acquired by 

employing the Singular boundary method for approximated solution of the 2D generalized 

nonlinear Klein-Gordon problems. 

We solve these examples using the SBM mentioned in Section2, and report the 

numerical results. 

The accuracy and convergency of the method shown with two types of error 

measurements, maximum absolute error 𝜀∞ and root mean square(RMS) error are used as 

follows: 

 

𝜀∞(𝑢) = ‖𝑢𝑒𝑥 − 𝑢𝑎𝑝‖∞ = max{|𝑢𝑒𝑥(x𝑖 . 𝑡) − 𝑢𝑎𝑝(x𝑖 . 𝑡)|𝑖 = 1.2. … .𝑁} 

 

and 

𝑅𝑀𝑆 = √
∑ (𝑁
𝑖=1 𝑢𝑒𝑥(x𝑖; 𝑡) − 𝑢𝑎𝑝(x𝑖; 𝑡))

2

𝑁
 

 

where 𝑢𝑒𝑥(x𝑖. 𝑡) and 𝑢𝑎𝑝(x𝑖 . 𝑡) denote the exact and numerical approximated solutions, 

respectively. 

In the following examples we employ Polyharmonic splines of order 2, 𝜙(𝑟) =
𝑟4𝑙𝑛(𝑟)  as radial basis function. 

 

Example 1. On a finite square 𝛺 = [0.3] × [0.3], consider Eqs.(1)-(2) for 

 

𝛼 = 1.  𝛽 = 0.  𝐺(𝑢) = 𝑢2 

as 

𝑢𝑡𝑡 + 𝑢
2 = 𝛥𝑢 − 𝑥𝑦𝑐𝑜𝑠𝑡 + 𝑥2𝑦2𝑐𝑜𝑠2𝑡.  x ∈ 𝛺. 𝑡 > 0. 

 

with initial conditions 

𝑢(x.0) = 𝑥𝑦.  x = (𝑥. 𝑦) ∈ 𝛺 

 
𝜕𝑢(x.𝑡)

𝜕𝑡
∣
𝑡=0
= 0.  x = (𝑥. 𝑦) ∈ 𝛺. 

 

and boundary conditions where the analytical solution is: 𝑢(𝑥. 𝑦. 𝑡)  = 𝑥𝑦𝑐𝑜𝑠𝑡. 
Here, the presented approach is applied for numerical solution of the main problem 

and two kinds of errors are reported in Table.1 at different times until the desired time T=1. 

Furthermore, it is clear from Table 1 that RMS of the SBM has no growth whenever the time 

is increasing, therefore, this fact shows stablility of the method. The graphs of numerical (left) 

and analytical (right) solutions are presented in Fig. 1. The maximum absolute error of this 

computed solution obtained by the SBM with 𝜏 = 0.002, 𝜏 = 0.001 and N=256 at time T=1 

are shown in Fig. 2. 
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Table 1. The 𝜺∞(𝒖) and RMS errors with N=256 and different 𝝉 at time 𝒕 for Example 1. 

𝑡 
𝜏 = 0.002 𝜏 = 0.001 

𝜀∞(𝑢) 𝑅𝑀𝑆 𝜀∞(𝑢) 𝑅𝑀𝑆 
0.10 7.2037 × 10−5 3.2289 × 10−5 4.7441 × 10−6 5.2173 × 10−6 
0.20 1.7219 × 10−4 3.2377 × 10−5 1.0507 × 10−5 5.2960 × 10−6 
0.30 1.8127 × 10−4 3.2556 × 10−5 1.3573 × 10−5 5.3747 × 10−6 
0.40 1.8292 × 10−4 3.2921 × 10−5 1.6639 × 10−5 5.4534 × 10−6 
0.50 1.9501 × 10−4 3.6476 × 10−5 1.9705 × 10−5 5.5321 × 10−6 
0.60 1.8899 × 10−4 3.7411 × 10−5 2.0271 × 10−5 5.6109 × 10−6 
0.70 1.9944 × 10−4 4.0064 × 10−5 2.5836 × 10−5 5.6896 × 10−6 
0.80 2.0045 × 10−4 4.3667 × 10−5 2.8902 × 10−5 5.7684 × 10−6 
0.90 1.9435 × 10−4 4.2748 × 10−5 2.1968 × 10−5 4.8472 × 10−6 
1.00 1.9221 × 10−4 4.0671 × 10−5 2.1534 × 10−5 4.9260 × 10−6 

 

 

  
Figure 1. Approximate solution by SBM (left) with 𝝉 = 𝟎. 𝟎𝟎𝟏 and N=256 and analytical solution (right) 

at time T=1 for Example 1. 

  
Figure 2. Logplot of the behaviour of 𝜺∞(𝒖) at different time 𝑻 = 𝟏 with 𝝉 = 𝟎. 𝟎𝟎𝟐 (left), 𝝉 = 𝟎. 𝟎𝟎𝟏 

(right) and N=256 for Example 1. 

 

Example 2. In this example, for domain 𝛺 = [0.3] × [0.3], consider Eqs.(1)-(2) for 

 

𝛼 = 1.  𝛽 = 0.  𝐺(𝑢) = 𝑢3 

 

as 

𝑢𝑡𝑡 + 𝑢
3 = 𝛥𝑢 + 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦 𝑠𝑖𝑛𝑡  + 𝑐𝑜𝑠3𝑥 𝑐𝑜𝑠3𝑦 𝑠𝑖𝑛3𝑡 .  x ∈ 𝛺.  𝑡 > 0 

 
with initial conditions 

𝑢(x. 0) = 0.  x = (𝑥. 𝑦) ∈ 𝛺. 
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𝜕𝑢(x. 𝑡)

𝜕𝑡
∣
𝑡=0
= 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦 .  x = (𝑥. 𝑦) ∈ 𝛺. 

 

and boundary conditions where the analytical solution is: 

 

𝑢(𝑥. 𝑦. 𝑡)  = 𝑐𝑜𝑠𝑥 𝑐𝑜𝑠𝑦 𝑠𝑖𝑛𝑡. 
 

Here, the presented approach is applied for numerical solution of the main problem 

and two kinds of errors are reported in Table 2 at different times until the desired time T=1. 

Furthermore, it is clear from Table 2 that RMS of the SBM has no growth whenever the time 

is increasing, therefore, this fact shows that the method is stable. The graphs of numerical 

(left) and analytical (right) solutions are presented in Fig. 3 . The maximum absolute error of 

this computed solution obtained by the SBM with τ = 0.002, τ = 0.001 and N=256 at time 

T=1 are shown in Fig. 4. 
 

Table 2.The 𝜺∞(𝒖) and RMS errors with N=256 and different 𝝉 at time 𝒕 for Example 2. 

 𝜏 = 0.002  𝜏 = 0.001  

𝑡 𝜀∞(𝑢) 𝑅𝑀𝑆 𝜀∞(𝑢) 𝑅𝑀𝑆 
0.10 7.5723 × 10−6 1.6435 × 10−6 5.2050 × 10−7 4.3219 × 10−7 

0.20 2.5940 × 10−5 1.9141 × 10−6 1.4721 × 10−6 4.6242 × 10−7 

0.30 2.8575 × 10−5 2.4643 × 10−6 1.7988 × 10−6 5.4516 × 10−7 

0.40 3.2876 × 10−5 2.9797 × 10−6 2.1780 × 10−6 6.8696 × 10−7 

0.50 3.0156 × 10−5 2.6513 × 10−6 2.6452 × 10−6 7.6165 × 10−7 

0.60 9.2368 × 10−6 2.4470 × 10−6 3.2344 × 10−6 7.1741 × 10−7 

0.70 8.5188 × 10−6 2.4593 × 10−6 6.1214 × 10−7 6.7511 × 10−7 

0.80 7.8477 × 10−6 2.6429 × 10−6 5.8860 × 10−7 5.7524 × 10−7 

0.90 7.2538 × 10−6 2.1034 × 10−6 4.9654 × 10−7 5.1394 × 10−7 

1.00 6.7718 × 10−6 1.9625 × 10−6 3.2333 × 10−7 4.6154 × 10−7 

 

  
Figure 3. Approximate solution by SBM (left) with 𝝉 = 𝟎. 𝟎𝟎𝟏 and N=256 and analytical solution (right) 

at time T=1 for Example 2.  
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Figure 4. Logplot of the behaviour of 𝜺∞(𝒖) at different time 𝑻 = 𝟏 with 𝝉 = 𝟎. 𝟎𝟎𝟐 (left), 𝝉 = 𝟎. 𝟎𝟎𝟏 

(right) and N=256 for Example 2. 

 
 

5. CONCLUSION 

 

 

In this article, singular boundary method (SBM) was employed for solving two-

dimensional nonlinear Klein-Gordon equation. A time discretization was applied to 

approximate the time derivatives. Also, to illustrate the accuracy and efficiency of this 

method, some numerical examples with different domains have been investigated. Through 

numerical experiments, we find that numerical results achieved by the SBM are in a good 

accordance with the exact analytical solutions. The results show the stability and convergency 

for this meshless technique has been considered that this technique is stable and furthermore, 

it is convergence. As illustrated by the computational results, implementation of the proposed 

method is very easy for similar problems. 

 

 

REFERENCES 

 

 

[1] Brebbia, C.A., Telles, J.C.F., Wrobel, L., Boundary Element techniques: Theory and 

Applications in Engineering, Springer Science and Business Media, Springer Berlin, 

Heidelberg, 1984.  

[2] Aslefallah, M., Shivanian, E., European Physical Journal Plus, 130(47), 1, 2015.  

[3] Dehghan, M., Shokri, A., Journal of Computational and Applied Mathematics, 230(2), 

400, 2009.  

[4] Aslefallah, M., Shivanian, E., Afrika Matematika, 29(7-8), 1203, 2018.  

[5] Shivanian, E., Aslefallah, M., International Journal of Industrial Mathematics, 11(1), 

25, 2019. 

[6] Kansa, E., Computers & Mathematics with Applications, 19(8-9), 127, 1990.  

[7] Belytschko, T., Lu, Y.Y., Gu, L., International Journal for Numerical Methods in 

Engineering, 37(2), 229, 1994.  

[8] Abbasbandy, S., Shirzadi, A., Engineering Analysis with Boundary Elements, 34(12), 

1031, 2010.  

[9] Shivanian, E., Aslefallah, M., Numerical Methods for Partial Differential Equations, 

33(3),724, 2017.  

[10] Fairweather, G., Karageorghis, A., Advances in Computational Mathematics, 9, 69, 

1998.  

[11] Poullikkas, A., Karageorghis, A., Georgiou, G., Computers & Structures, 80, 365, 2002. 



  Numerical solution for two-dimensional nonlinear …  Mohammad Aslefallah et al. 

 

www.josa.ro Mathematics Section 

354 

[12] Chen, W., Chinese Journal of Solid Mechanics, 30(6), 592, 2009.  

[13] Li, J.P., Chen, W., Fu, Z.J., Sun, L.L., Engineering Analysis with Boundary Elements, 

73, 161, 2016.  

[14] Wang, F., Chen,W., Zhang, C., Lin, J., Applied Mathematical Modelling, 1, 47, 2017.  

[15] Chen, W., Tanaka, M., Computers & Mathematics with Applications, 43, 379, 2002.  

[16] Sarler, B., Engineering Analysis with Boundary Elements, 33, 1, 2009. 

[17] Liu, Y.J., Engineering Analysis with Boundary Elements, 34, 1, 2010.  

[18] Gu, Y., Chen, W., Zhang, J., Engineering Analysis with Boundary Elements, 36, 1173, 

2012.  

[19] Aslefallah, M., Abbasbandy, S., Shivanian, E., Journal of Applied Mathematics and 

Computing, 63(1), 585, 2020.  

[20] Aslefallah, M., Abbasbandy, S., Shivanian, E., Numerical Methods for Partial 

Differential Equations, 36(2), 249, 2020. 

[21] Aslefallah, M., Abbasbandy, S., Shivanian, E., Engineering Analysis with Boundary 

Elements, 108, 124, 2019. 

[22] Aslefallah, M., Rostamy, D., Journal of Engineering Mathematics, 118(1), 1, 2019.  

[23] Aslefallah, M., Abbasbandy, S., Shivanian, E., Engineering Analysis with Boundary 

Elements, 107, 198, 2019.  

[24] Muleshkov, A.S., Golberg, M.A., Chen, C.S., Computational Mechanics, 24(5-6), 411, 

1999.  

[25] Belayeh, W.G., Mussa, Y.O., Gizaw, A.K., Mathematical Problems in Engineering, 1, 

12, 2020. 

[26] Sarboland, M., Aminataei, A., Universal Journal of Applied Mathematics, 3(3), 40, 

2015. 

[27] Abu-Arqub, O., Maayah, B., International Journal of Modern Physics B, 37(18), 

2350179, 2022. 

[28] Abu-Arqub, O., Alsulami, H. & Alhodaly, M., Mathematical Sciences, 

https://doi.org/10.1007/s40096-022-00495-9, 2022. 

[29] Maayah, B., Abu-Arqub, O., Alnabulsi, S., Alsulami, H., Chinese Journal of Physics, 

80, 463, 2022. 

[30] Abdel-Aal, M., Djennadi, S., Abu-Arqub, O., Alsulami, H., Mathematical Problems in    

Engineering, 2022, 5104725, 2022. 

[31] Yuzbasi, S., Sezer, M., Journal of Science and Arts, 3(56), 21, 2021. 

[32] Yuzbasi, S., Gok, E., Sezer, M., Journal of Science and Arts, 3, 20, 2020. 

[33] Yuzbasi, S., Savasaranil, N., Journal of Science and Arts, 4(53), 20, 2020. 

[34] Yuzbasi, S., Yildirim, G., Turkish Journal of Mathematics, 47, 37, 2023. 

[35] Izadi, M., Yuzbasi, S., Baleanu, D., Mathematical Sciences, 16, 459, 2022. 

[36] Izadi, M., Yuzbasi, S., Adel, W., Mathematical Sciences, 2022. 

https://doi.org/10.1007/s40096-022-00468-y 

 

 
 

 

 

https://www.worldscientific.com/doi/10.1142/S0217979223501795
https://www.worldscientific.com/doi/10.1142/S0217979223501795
https://doi.org/10.1007/s40096-022-00495-9
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mpe/
https://doi.org/10.1007/s40096-022-00468-y

