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Abstract. Properties of a large class of (M, k)-*-quasi-parahyponormal operators are
established in the present article. It is shown that these operators have finite ascent and the
single valued extension property. The matrix representation and the multicyclicity on a
separable complex Hilbert space are proved too.
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1. INTRODUCTION

Let H be an infinite dimensional separable complex Hilbert space, and let B(H)
denote the Banach algebra of all bounded linear operators on . An operator A € B(H) is
said to be:

Positive if (Ax,x) = 0 for each x € .

Isometry if A*A = I, where [ is the identity operator on H'.
*-paranormal if for all x € A, ||A*x||? < ||A%x]|||x]|.
Quasi-*-paranormal if [|[A*Ax||? < ||A?Ax||||Ax]|| for all x € H.
k-quasi-*-paranormal if ||A*A¥x||? < ||A2A%x||||A*x]| for all x € H.
*-class A if |42 — |A*|? = 0.

e k-quasi-*-class A if A**(]4%| — |A*|>)Ak = 0.

1

where |A| = (A*A)z denotes the modulus of A. Duggal, Jeon and Kim introduced the *-
class A operators in [1], and proved that they are contained in the class of *-paranormal
operators. Also, Mecheri introduced the quasi-*-class A operators in [2] and showed that a
quasi-*-class A operator is quasi-*-paranormal. Authors in [3] introduced the class of k-
quasi-*-paranormal operators and gave several basic and spectral properties for such a class of
operators. Senthilkumar and Parvatham in [4] presented the classes of *-parahyponormal and
k quasi-*-parahyponormal operators, and showed certain of their properties. In the following,
it will be introduced a large class of (M, k)-quasi-*-parahyponormal operators generalizing
the above classes. We present their matrix representation, their ascent and the single valued
extension property, briefly SVEP. Different related properties are also established.
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2. RESULTS

2.1. CLASS OF k-QUASI-*-PARAHYPONORMAL OPERATORS

Definition 1. [4] An operator A € B(H) is said to be *-parahyponormal if

(A*A)? —2044*+ 22 >0
forall A > 0.

Definition 2. [4] An operator A € B(H) is said to be k -quasi-*-parahyponormal for some
integer k if
AR ((A*A)?% — 2244 + 12)Ak >0
forall 2 > 0.
This definition is equivalent to

|A* Ak x||? < ||A*x||||A* A% x|
forall x € H.

Proposition 3. Let S be the bilateral weighted shift defined on the usual Hilbert space ¢, by
Se, = a,e .1, Where (e,), is the standard basis, and («,), is a decreasing complex
sequence. Then, S is k -quasi-*-parahyponormal if and only if |, x—1] < |@n4| TOr all n.

Proof: We have
IS*S* eI < |ISFe, |[[IS*S* e, ||

Hence, for all n,
|an|2|an+1|2- . |an+k—2|2|afn+k—1|4 < |an|2|an+1|2- i |an+k—2|2|an+k—1|2|an+k|2
Thus,

|an+k—1| < |an+k|
for all n. u

Theorem 4. Unitarily equivalent operators to a k-quasi-*-parahyponormal operator are also
k-quasi-*-parahyponormal.

Proof: Let A be a k-quasi-*-parahyponormal operator, and let B € B(H) be unitarily
equivalent to A. Then, there exists a unitary operator U on H satisfying B = U*AU. Hence,

B**((B*B)? — 2ABB* + A?)B* =
= U*A**U(U*(A*A)?U — 2AU*AA*U + A*)U*A*U
= U*A**(A*A)2 AU — 2AU*A*AA* AU + 22U* Ak AkU
= U*A**((4*A)? — 2144 + 19)A*U > 0

Thus, B is k-quasi-*-parahyponormal. [
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Theorem 5. Let A € B(H) be a k-quasi-*-parahyponormal operator, and let S € B(H) be
an isometry. If A commutes with S, then AS is also k-quasi-*-parahyponormal.

Proof: Since A is k-quasi-*-parahyponormal and ||S*|| < 1,
IS*A*Akx||? < [IS*[IP[|A*Afx||? < [|ARx||[|A* A x|

Hence,
(A*R[(A*A)? — 2ASAA*S* + A2]Akx, x) =
= ||AkAR*1x||2 — 21||S* A* Ak x||? + A2||A*x||?
> |4F AR |2 — 20| 4¥x] |14 A% x]) + 22 | A
>0

forall x € # and all A > 0. Thus,
A*K[(A*A)% — 2ASAA*S* + 12) Ak
is a positive operator. Therefore,

(AS)™*(((AS)*AS)? — 22(AS)(AS)* + A*)(AS)k =
= S*kA*K[(A*A)? — 2ASAA*S* + A2]A*Sk >0

This achieves the proof. [

Let A € B(#). Denote by R(U(A)) for the algebra of all rational functions with
poles of 6(A) rather then the set of all rational analytic functions on 6(A).

Definition 6. [5] An operator A € B(H) is said to be n-multicyclic, if there exist n
(generating) vectors x4, x5, .., X, in H such that

V{g(x;,1<i<n,geR(c(A)} =%

Denote by ker(A) and ran(A) respectively for the null space and the range of A.
Then, we have :

Theorem 7. If A is an n-multicyclic k-quasi-*-parahyponormal operator, then its restriction
on ran(A¥) is also n -multicyclic.

Proof: Put

(A A,
A‘(O A3>

on the decomposition H = ran(4%) @ ker(A**). Since a(4,) < o(A) by [4, Theorem 2.1],
R(0(41)) € R(a(A)). The operator A is n -multicyclic. Then, there exist n generating
vectors x4, x5, .., x, € H for which

V{g@x;,1<i<n,geR(c(A)}=H
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Puty; = A¥x;, 1 < i < n. Hence,

V{gUDye 1 <i<n g € R(o()} = V{gDA*x, 1 < i <n, g € R(o(A)))}
= V{g()akx, 1< i<n, g € R(o(4)}
= V{Akg(A)x;, 1 < i <n, g € R(a(A)))

=ran(4k).
But,

V{g(ADy, 1<i<n geR(o(A)} e V{g(ADy, 1<i<n geR(c(A))}
Thus,
ran(4¥) c V{g(A)y, 1 <i<n,g € R(c(4)))}

Therefore, {y;}i-, are n-generating vectors of A;, and A, is then n-muticyclic. The
proof is achieved. ]
2.2. CLASS OF (M, k)-QUASI-*-PARAHYPONORMAL OPERATORS

Interesting properties of (M, k)-quasi-*-parahyponormal operators are shown in this
section. In particular, the matrix representation, the finite ascent and the SVEP are presented.
Definition 8. [6] An operator A € B(H) is said to be M-*-parahyponormal if there exists
M > 0 satisfying

M(A*A)? — 2AAA* + 212 >0
We introduce a new class of (M, k)-quasi-parahyponormal operators as follows:

Definition 9. An operator A € B(H) is said to be (M, k)-quasi-*-parahyponormal for some
integer k, if there exists M > 0, satisfying

AR(M(A*A)? — 2044 + A2)A* > 0
This definition is clearly equivalent to
14* Ak x||? < VM| AFx (]| A AR x| 1
forall x € H.
Inequality (1) shows that this class of operators is nested with respect to M, i.e., an
(M, k)-quasi-*-parahyponormal operator is (M’ k)-quasi-*-parahyponormal for each

O<M< M.

Remark 10. Classes of (M, k)-quasi-*-parahyponormal operators are not identical with
respect to k. In fact, let’s consider the unilateral weighted right shift on £,(N) defined by
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1 1 .
Ae, =0, Ae,q = aye,, Where a; = a3 = > =7 ap=1n24 and (e,) is the

standard basis of £, (N). It’s easy to show that A is M-*-quasi-parahyponormal. However,
* 2 1 *
A% |I" = 7> VM ||e|[]|4*Aey]| = 0

which contradicts the inequality (1). Hence, A is not M-*-parahyponormal. Analogously to
proofs of Theorems 4 and 5, we can have:

Theorem 11.

1. A unitarily equivalent operator B to an (M, k)-quasi-*-parahyponormal operator A is
also (M, k)-quasi-*-parahyponormal.

2. If Ais (M, k)-quasi-*-parahyponormal operator, and S is an isometry that commutes
with A, then the product AS is (M, k)-quasi-*-parahyponormal.

Remark 12. Property (1) of Theorem 11 needs not to be in general true if A and B are similar
operators, i.e., there exists an invertible operator U for which AU=UB, and A and B are not
unitarily equivalent. Indeed, let’s consider the bilateral weighted shift A defined on the Hilbert
space ¢,(Z) by

ép_1, NF3

Ae, = {
" \/Eez, n=3

The operator 4 is 8-*-parahyponormal, and the invertible operator

epns1, NF2

Ue, = il

—e,, =2
3 N

is non unitary. With an easy computation, the operator B = U~1AU satisfies

|B*e1||? = 18 > V8|ley||||B*Bey || = V8

Thus, B is not 8-*-parahyponormal.

Theorem 13. Let A € B(H) be an (M, k)-quasi-*-parahyponormal operator. If ran(AK) =
, then A is M-*-parahyponormal.

Proof: Let x € 7. Since ran(A¥) is dense in 7, there exists a sequence (x,,),, in H such that
lim A¥x,, = x. Since A is (M, k) -quasi-*-parahyponormal,

n—o0o
1472 = || lim A"A% 2, ]1% = lim || 4" 4%, 2
n—-oo n—->oo
< VM lim ||A*x,,||[|[A*AF+ x|
n—-oo
< VM||x||]|A* Ax]|
by the continuity of the inner product. Thus, A is M-*-parahyponormal. |
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Corollary 14. Let A be a nonzero (M, k)- quasi-*-parahyponormal operator but not M-*-
parahyponormal. Then, A admits at least a non trivial closed invariant subspace.

Proof: By the absurd, assume that A has no non trivial closed invariant subspace. Since A is
not null, ker(A) = H and ran(A) # {0} are non trivial closed invariant subspaces for A.

Thus, we must have ker(4) ={0} and ran(4) =H. By Theorem13, A is M-*-
parahyponormal, which contradicts the hypothesis. |

Theorem 15. Let A € B(H) be an (M, k)- quasi-*-parahyponormal operator. If ran(4%) is
. . . . A A
not dense in , then A admits the matrix representation A = ( 01 A2> under the
3
decomposition H = ran(Ak) @ ker(A**). Furthermore, A, is M-*-parahyponormal, A% = 0,
and 0 (4) = a(A4,) U {0}.

Proof: Since A is (M, k)-quasi-*-parahyponormal,

(A**(M(A*A)? — 214A4* + 22)AFy,y) > 0
for all y € . Hence,
((M(A*A)? — 20AA* + 22) ARy, Aky) > 0

Thus, for all x € ran(4%),
((M(A*A)? — 20A4" + 2D)x, x) = (M(A%A,)? — 204, A% + 1)x,x) = 0

Consequently, A; is M-parahyponormal. Let now P be the orthogonal projection on
ran(A*).Forall x = x; + x5,y = y; + y, € H, we have

(Akxy, y,) = (A¥(I — P)x, (I = P)y) = (U — P)x, A*™*(I — P)y) = 0

Thus, A% = 0. Furthermore, 0(4,) U o(43) = 0(4A) U 2, where 2 is the union of
holes in a(A) which happen to be a subset of a(4;) N a(A3) by [7], Corollary 7], with
0(A,) N a(A3) has no interior point, and A5 is nilpotent. Thus, 6(A4) = o(4,) U {0}. ]

Corollary 16. Let A € B(H) be (M, k) -quasi-*-parahyponormal. If the restriction A; =

A|W is invertible, then A is similar to the direct sum of an M-*-parahyponormal operator

and a nilpotent operator.
Proof: Let
A A —
A= ( 1 2) on H = ran(4%) @ ker(4*%)
0 A,
Then, A; is M-*-parahyponormal by Theorem 15. Since A, is invertible, 0 & o (A).

Hence, d(A;) N a(43;) = @. By Rosenblum’s Corollary [8-9], there exists C € B(H) for
which A,C — CA; = A,. Thus,

1= 06 )6 )

The proof is achieved. ]
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Theorem 17. The restriction of an (M, k)-quasi-*-parahyponormal operator A € B(H) on a
closed invariant subspace M c H is also (M, k)-quasi-*-parahyponormal.

Proof: Let A; = A}y, and let P be the orthorprojector on M. Then, AP = PA*P and
A; = PAP);,. Hence, the result holds by Theorem 15. [ ]

Definition 18. [10] An operator A in B(H) is said to have the Single Valued Extension
Property SVEP at a complex number «, if for each open neighborhood V of «, the unique
analytic function f:V — H satisfying

A-Df@A =0
for all A € V is f = 0. Furthermore, A is said to have SVEP if A has SVEP at every complex
number.
Definition 19. [10] For A € B(H), the smallest integer m such that ker(A™) = ker(A™*1)
is said to be the ascent of A, and is denoted by a(A). If no such integer exists, we shall write
a(A) = oo,

Example 1. [11] a(A) =1 for a dominant operator A € B(H), i.e., ran(A—1) €
ran(A — 1)* forall A € C.

Example 2. Author in [12] showed that if A is a k-quasi-M-hyponormal operators, i.e.,
VMII(A = DA*x|| = [|(A — D)*Akx||
forcertain M > 0,and all x € H, thena(A) =kanda(A—1) =1, (A€C, 1 #0).

Definition 20. [10] The smallest integer m satisfying ran(4™) = ran(A™*?1) is said to be
the descent of 4, and is denoted by 6(A). If no such integer exists, we set §(4) = oo.

According to [10], if @(A) and &§(A) are finite, then they are equal. More information
on these notions can be found in [10] and in [13-14]. We’ve then,

Theorem 21. If A € B(H) is (M, k)-quasi-*-parahyponormal, then (A — u) has finite ascent
for all complex scalar u. Furthermore, a(4) < k and a(A — u) = 1.

Proof: Case (i). u = 0. Since A is (M, k)-quasi-*-parahyponormal operator,
A" A x> < VM| A¥x ||| A" A* x|
for certain M > 0. Let x € ker(A**1). Then, A*A¥x = 0. Hence, for all z €
(A*A*x,z) = 0
(A¥x,Az) = 0

Forall z € H. Thus, A*x € (ran(A))l.
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1
Since ran(4¥) c ran(4), (ran(A))l c (ran(Ak)) . Therefore,

A*x € (rand®)* n ran(4¥) = {0}

and so x € ker(4%).

Case (ii). u # 0. Since ker(A — u) < ker(A — w)* by, ker(A — u) reduces A. Then,
H =ker(A—pu)* @ ker(A —pn)
Let then x = x; + x, € H with x; € ker(A — u)* and x, € ker(A — u). Hence,

xEker(A—pu)?=>A—-w?*x=0=A—-u?x
= (A—wx, € ker(A—p)
= (A—wx, € ker(A—pw)* Nnran(A — ) = {0}
= x; € ker(A — )
=>x,=0=2>x=x, €ker(A—pu)

Therefore, ker(A — u)? c ker(A — p)? and a(4 — p) = 1. [
Corollary 22. (M, k)-quasi-parahyponormal operators have SVEP.
Proof: An immediate consequence of [10, Theorem 3.8] and Theorem 21. ]

Definition 23. [10] For an operator A € B(#), the local resolvent set of A at a vector
x € H, denoted by p,(x), is defined to consist of complex elements z, such that there exists
an analytic function f(z) defined in a neighborhood of z,, with values in A, for which

(A=2)f(2) = x.

Definition 24. [10] The set C\p4(x) is called the local spectrum of A at a vector x in H.
We’ve then the following important result:

Theorem 25. LetA = (%1 ﬁz) be an (M, k)-quasi-*-parahyponormal operator with
3

respect to the decomposition # = ran(A¥) @ ker(A**) . Then, forall = x, + x, € H:
a. 0y, (x3) € oy (g + x32)
b. O-Al(X) = O-Al(xl + 0)

Proof: a. Let z, € ps(x; + x,). Then, there exists a neighborhood U of z, and an analytic
function f(z) defined on U, with values in 7, for which

A-2)f(z)=x,z€U )

Let f = f, + f, where fi,f, are in the spaces O(U,ran(Ak)) and O(U, ker(A**))
respectively, consisting of analytic functions on U with values in H, with respect to the
uniform topology [1]. Equality (2) can then be written

WWW.josa.ro Mathematics Section



A large class extending .... Aissa Nasli Bakir 375

(5" a2 ) ()= ()

(A3 —2)f2(2) =x,,z€U

Then

Hence, zy € pg,(x2). Thus, (a) holds by passing to the complement.

b. If z; € p,(x; + 0), then, there exists a neighborhood V; of z; and an analytic function g
defined on V; with values in H verifying

A-2)f(z2)=x,+0,z€V; 3)

Let g = g, + g,, Where g, €0 (Vl,ran(A")), g, € O(Vl,ker(A*")) are as in (a).
From equation (3) we obtain

(A1 —2)g1(2) + A29,(2) = x4
and
(A3 —2)g,(z) =0,z€V,

Since As is nilpotent by Theorem 15, A; has SVEP by [10]. Thus, g,(z) = 0.
Consequently, (A; — z)g;(2) = x;. Therefore, z; € py, (x1), and then p,(x; + 0) € py, (xq).
Thus, a4, (x) = 04, (x; + 0).

Now, if z, € py,(x1), then, there exists a neighborhood V, of z, and an analytic
function h from V, onto #, such that (4; — z)h(z) = x,, for all € V, . Thus,

A-2)(h(2)+0)=A;—2)h(2) =x, =%, +0

Hence, z, € p,(x; + 0). |

Remarks 1. Note that if A is (M, k)-quasi-*-parahyponormal, then for all « € C and all
x EH,

(@A) (@A) x| = |a***?|| A" AFx||* < |a|?*2VM||A*x|[]|A"A* x|
= VM||(@d)* x|l (@A) (ad) x|

Hence, aA is also (M, k)-quasi-*-parahyponormal.

Remarks 2. On the other hand, operators A = G (1)) andB:(_O1 _01) are 2-*-

parahyponormal. However, for S = %(A + B) and x = (0,1) € C?, we get

1
IS*x|I* = 7 > V2||x|[||S*Sx]| = 0

This contradicts the inequality (1). Hence, S is not 2-*-parayponormal. Thus, the
above class is not convex.
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1 1

Remarks 3. Also, for the previous operator A = (1 0

), the operator A — I satisfies

IA—DOD? =1>V2|ODIIIA-D@A-D*OD| =0

Hence, A — I is not 2-*-parahyponormal. This shows that the considered class is not
translation invariant.

3. CONCLUSION

We’ve shown certain fundamental properties of the considered class of operators. A
matrix representation, the SVEP, the finite ascent as well as different imoprtant properties
have been established.
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