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Abstract. Properties of a large class of (𝑀, 𝑘)-*-quasi-parahyponormal operators are 

established in the present article. It is shown that these operators have finite ascent and the 

single valued extension property. The matrix representation and the multicyclicity on a 

separable complex Hilbert space are proved too. 
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1. INTRODUCTION  

 

 

Let ℋ be an infinite dimensional separable complex Hilbert space, and let ℬ(ℋ) 

denote the Banach algebra of all bounded linear operators on ℋ. An operator 𝐴 ∈ ℬ(ℋ) is 

said to be: 

 Positive if  ⟨A𝑥, 𝑥⟩ ≥ 0 for each 𝑥 ∈ ℋ. 
 Isometry if 𝐴⋆𝐴 = 𝐼, where I  is the identity operator on ℋ.  
 *-paranormal if for all 𝑥 ∈ ℋ, ‖𝐴⋆𝑥‖2 ≤ ‖𝐴2𝑥‖‖𝑥‖. 

 Quasi-*-paranormal if ‖𝐴⋆𝐴𝑥‖2 ≤ ‖𝐴2𝐴𝑥‖‖𝐴𝑥‖ for all 𝑥 ∈ ℋ. 
 𝑘-quasi-*-paranormal if ‖𝐴⋆𝐴𝑘𝑥‖2 ≤ ‖𝐴2𝐴𝑘𝑥‖‖𝐴𝑘𝑥‖ for all 𝑥 ∈ ℋ. 
 *-class 𝔸 if |𝐴2| − |𝐴⋆|2 ≥ 0. 

 𝑘-quasi-*-class 𝔸 if 𝐴⋆𝑘(|𝐴2| − |𝐴⋆|2)𝐴𝑘 ≥ 0. 

   where  |𝐴| = (𝐴⋆𝐴)
1

2 denotes the modulus of 𝐴. Duggal, Jeon and Kim introduced the *-

class 𝔸 operators in [1], and proved that they are contained in the class of *-paranormal 

operators. Also, Mecheri introduced the quasi-*-class 𝔸 operators in [2] and showed that a 

quasi-*-class 𝔸 operator is quasi-*-paranormal. Authors in [3]  introduced the class of 𝑘-

quasi-*-paranormal operators and gave several basic and spectral properties for such a class of 

operators. Senthilkumar and Parvatham in [4] presented the classes of *-parahyponormal and 

𝑘 quasi-*-parahyponormal operators, and showed certain of their properties. In the following, 

it will be introduced a large class of (𝑀, 𝑘)-quasi-*-parahyponormal operators generalizing 

the above classes. We present their matrix representation, their ascent and the single valued 

extension property, briefly SVEP. Different related properties are also established. 
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2. RESULTS  

 

 

2.1. CLASS OF 𝒌-QUASI-*-PARAHYPONORMAL OPERATORS 

 

 

Definition 1.  [4]  An operator 𝐴 ∈ ℬ(ℋ) is said to be *-parahyponormal if 

 

(𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2 ≥ 0 

for all 𝜆 > 0. 
 

Definition 2.  [4] An operator 𝐴 ∈ ℬ(ℋ) is said to be 𝑘 -quasi-*-parahyponormal for some 

integer 𝑘 if 

𝐴⋆𝑘((𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2)𝐴𝑘 ≥ 0 

for all 𝜆 > 0. 
This definition is equivalent to 

 

‖𝐴⋆𝐴𝑘𝑥‖2 ≤ ‖𝐴𝑘𝑥‖‖𝐴⋆𝐴𝑘+1𝑥‖ 

for all 𝑥 ∈ ℋ. 

 

Proposition 3.  Let 𝑆 be the bilateral weighted shift defined on the usual Hilbert space ℓ2 by 

𝑆𝑒𝑛 = 𝛼𝑛𝑒𝑛+1, where (𝑒𝑛)𝑛 is the standard basis, and (𝛼𝑛)𝑛 is a decreasing complex 

sequence. Then, 𝑆 is 𝑘 -quasi-*-parahyponormal if and only if |𝛼𝑛+𝑘−1| ≤ |𝛼𝑛+𝑘| for all 𝑛. 
 

Proof: We have 

‖𝑆⋆𝑆𝑘𝑒𝑛‖2 ≤ ‖𝑆𝑘𝑒𝑛‖‖𝑆⋆𝑆𝑘+1𝑒𝑛‖ 

 

Hence, for all 𝑛, 
 

|𝛼𝑛|2|𝛼𝑛+1|2. . . |𝛼𝑛+𝑘−2|2|𝛼𝑛+𝑘−1|4 ≤ |𝛼𝑛|2|𝛼𝑛+1|2. . . |𝛼𝑛+𝑘−2|2|𝛼𝑛+𝑘−1|2|𝛼𝑛+𝑘|2 

 

Thus, 

|𝛼𝑛+𝑘−1| ≤ |𝛼𝑛+𝑘| 
for all 𝑛.         ∎ 

 

Theorem 4.  Unitarily equivalent operators to a 𝑘-quasi-*-parahyponormal operator are also 

𝑘-quasi-*-parahyponormal. 

 

Proof: Let 𝐴 be a 𝑘-quasi-*-parahyponormal operator, and let 𝐵 ∈ ℬ(ℋ) be unitarily 

equivalent to 𝐴. Then, there exists a unitary operator 𝑈 on 𝐻 satisfying 𝐵 = 𝑈⋆𝐴𝑈. Hence, 

 

𝐵⋆𝑘((𝐵⋆𝐵)2 − 2𝜆𝐵𝐵⋆ + 𝜆2)𝐵𝑘 = 

= 𝑈⋆𝐴⋆𝑘𝑈(𝑈⋆(𝐴⋆𝐴)2𝑈 − 2𝜆𝑈⋆𝐴𝐴⋆𝑈 + 𝜆2)𝑈⋆𝐴𝑘𝑈 

= 𝑈⋆𝐴⋆𝑘(𝐴⋆𝐴)2𝐴𝑘𝑈 − 2𝜆𝑈⋆𝐴⋆𝑘𝐴𝐴⋆𝐴𝑘𝑈 + 𝜆2𝑈⋆𝐴⋆𝑘𝐴𝑘𝑈 

= 𝑈⋆𝐴⋆𝑘((𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2)𝐴𝑘𝑈 ≥ 0 

 

Thus, 𝐵 is 𝑘-quasi-*-parahyponormal.          ∎ 
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Theorem 5.  Let 𝐴 ∈ ℬ(ℋ) be a 𝑘-quasi-*-parahyponormal operator, and let 𝑆 ∈ ℬ(ℋ) be 

an isometry. If 𝐴 commutes with 𝑆, then 𝐴𝑆 is also 𝑘-quasi-*-parahyponormal. 

 

Proof: Since 𝐴 is 𝑘-quasi-*-parahyponormal and ‖𝑆⋆‖ ≤ 1, 
 

‖𝑆⋆𝐴⋆𝐴𝑘𝑥‖2 ≤ ‖𝑆⋆‖2‖𝐴⋆𝐴𝑘𝑥‖2 ≤ ‖𝐴𝑘𝑥‖‖𝐴⋆𝐴𝑘+1𝑥‖ 

 

Hence, 

⟨𝐴⋆𝑘[(𝐴⋆𝐴)2 − 2𝜆𝑆𝐴𝐴⋆𝑆⋆ + 𝜆2]𝐴𝑘𝑥, 𝑥⟩ = 

= ‖𝐴𝑘𝐴𝑘+1𝑥‖2 − 2𝜆‖𝑆⋆𝐴⋆𝐴𝑘𝑥‖2 + 𝜆2‖𝐴𝑘𝑥‖2 

≥ ‖𝐴𝑘𝐴𝑘+1𝑥‖2 − 2𝜆‖𝐴𝑘𝑥‖‖𝐴⋆𝐴𝑘+1𝑥‖ + 𝜆2‖𝐴𝑘𝑥‖2 

≥ 0 

for all 𝑥 ∈ ℋ and all 𝜆 > 0. Thus,  

 

𝐴⋆𝑘[(𝐴⋆𝐴)2 − 2𝜆𝑆𝐴𝐴⋆𝑆⋆ + 𝜆2]𝐴𝑘 

 

is a positive operator. Therefore, 

 

(𝐴𝑆)∗𝑘(((𝐴𝑆)⋆𝐴𝑆)2 − 2𝜆(𝐴𝑆)(𝐴𝑆)⋆ + 𝜆2)(𝐴𝑆)𝑘 = 

= 𝑆⋆𝑘𝐴⋆𝑘[(𝐴⋆𝐴)2 − 2𝜆𝑆𝐴𝐴⋆𝑆⋆ + 𝜆2]𝐴𝑘𝑆𝑘 ≥ 0 

 

This achieves the proof.         ∎ 

  

Let 𝐴 ∈ ℬ(ℋ).  Denote by ℛ(𝜎(𝐴)) for the algebra of all rational functions with 

poles of σ(A) rather then the set of all rational analytic functions on σ(A). 

 

Definition 6. [5] An operator 𝐴 ∈ ℬ(ℋ) is said to be 𝑛-multicyclic, if there exist 𝑛 

(generating) vectors 𝑥1, 𝑥2, . . , 𝑥𝑛 in ℋ such that 

 

⋁{𝑔(𝐴)𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 , 𝑔 ∈ ℛ(𝜎(𝐴))} = ℋ 

 

Denote by 𝑘𝑒𝑟(𝐴) and 𝑟𝑎𝑛(𝐴) respectively for the null space and the range of 𝐴. 
Then, we have : 

 

Theorem 7.  If 𝐴 is an 𝑛-multicyclic 𝑘-quasi-*-parahyponormal operator, then its restriction 

on ran(𝐴𝑘) is also 𝑛 -multicyclic. 

 

Proof: Put 

𝐴 = (
𝐴1 𝐴2

0 𝐴3
) 

 

on the decomposition ℋ = 𝑟𝑎𝑛(𝐴𝑘) ⊕ 𝑘𝑒𝑟(𝐴⋆𝑘).  Since 𝜎(𝐴1) ⊂ 𝜎(𝐴) by [4, Theorem 2.1], 

ℛ(𝜎(𝐴1)) ⊂ ℛ(𝜎(𝐴)). The operator 𝐴 is 𝑛 -multicyclic. Then, there exist 𝑛 generating 

vectors 𝑥1, 𝑥2, . . , 𝑥𝑛 ∈ ℋ for which 

 

⋁{𝑔(𝐴)𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴))} = ℋ 
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Put 𝑦𝑖 = 𝐴𝑘𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛. Hence, 

 

⋁{𝑔(𝐴1)𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴))} = ⋁{𝑔(𝐴1)𝐴𝑘𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴))} 

= ⋁{𝑔(𝐴)𝐴𝑘𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴))} 

= ⋁{𝐴𝑘𝑔(𝐴)𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴))} 

                                         = 𝑟𝑎𝑛(𝐴𝑘). 

But, 

 

⋁{𝑔(𝐴1)𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴))} ⊂ ⋁{𝑔(𝐴1)𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴1))}. 
 

Thus, 

 

𝑟𝑎𝑛(𝐴𝑘) ⊂ ⋁{𝑔(𝐴1)𝑦𝑖 , 1 ≤ 𝑖 ≤ 𝑛, 𝑔 ∈ ℛ(𝜎(𝐴1))} 

 

Therefore, {𝑦𝑖}𝑖=1
𝑛  are 𝑛-generating vectors of 𝐴1, and 𝐴1 is then 𝑛-muticyclic. The 

proof is achieved.             ∎                 

 

 

2.2. CLASS OF (𝑴, 𝒌)-QUASI-*-PARAHYPONORMAL OPERATORS 

 

 

Interesting properties of (𝑀, 𝑘)-quasi-*-parahyponormal operators are shown in this 

section. In particular, the matrix representation, the finite ascent and the SVEP are presented. 

 

Definition 8.  [6]  An operator 𝐴 ∈ ℬ(ℋ) is said to be 𝑀-*-parahyponormal if there exists 

𝑀 > 0 satisfying 

𝑀(𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2 ≥ 0 

 

We introduce a new class of (𝑀, 𝑘)-quasi-parahyponormal operators as follows: 

 

Definition 9.  An operator 𝐴 ∈ ℬ(ℋ) is said to be (𝑀, 𝑘)-quasi-*-parahyponormal for some 

integer 𝑘, if there exists 𝑀 > 0, satisfying   

 

𝐴⋆𝑘(𝑀(𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2)𝐴𝑘 ≥ 0 

 

This definition is clearly equivalent to 

 

‖𝐴⋆𝐴𝑘𝑥‖2 ≤ √𝑀‖𝐴𝑘𝑥‖‖𝐴⋆𝐴𝑘+1𝑥‖ (1)  

 

for all 𝑥 ∈ ℋ. 

 

Inequality (1) shows that this class of operators is nested with respect to 𝑀, i.e., an 
(𝑀, 𝑘)-quasi-*-parahyponormal operator is (𝑀′, 𝑘)-quasi-*-parahyponormal for each 

0 < 𝑀 < 𝑀′. 
 

Remark 10.  Classes of (𝑀, 𝑘)-quasi-*-parahyponormal operators are not identical with 

respect to 𝑘. In fact, let’s consider the unilateral weighted right shift on ℓ2(ℕ) defined by 
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𝐴𝑒1 = 0,  𝐴𝑒𝑛+1 = 𝛼𝑛𝑒𝑛, where 𝛼1 = 𝛼3 =
1

2
,  𝛼2 =

1

4
,  𝛼𝑛 = 1,  𝑛 ≥ 4, and (𝑒𝑛) is the 

standard basis of ℓ2(ℕ). It’s easy to show that 𝐴 is 𝑀-*-quasi-parahyponormal. However, 

 

‖𝐴⋆𝑒1‖2 =
1

4
> √𝑀‖𝑒1‖‖𝐴⋆𝐴𝑒1‖ = 0 

 

which contradicts the inequality (1). Hence, 𝐴 is not 𝑀-*-parahyponormal. Analogously to 

proofs of Theorems 4 and 5, we can have: 

 

Theorem 11.   

1. A unitarily equivalent operator 𝐵 to an (𝑀, 𝑘)-quasi-*-parahyponormal operator 𝐴 is 

also (𝑀, 𝑘)-quasi-*-parahyponormal. 

2. If 𝐴 is (𝑀, 𝑘)-quasi-*-parahyponormal operator, and 𝑆 is an isometry that commutes 

with 𝐴, then the product 𝐴𝑆 is (𝑀, 𝑘)-quasi-*-parahyponormal. 

 

Remark 12.  Property (1) of Theorem 11 needs not to be in general true if 𝐴 and 𝐵 are similar 

operators, i.e., there exists an invertible operator U for which AU=UB, and A and B are not 

unitarily equivalent. Indeed, let’s consider the bilateral weighted shift 𝐴 defined on the Hilbert 

space ℓ2(ℤ) by 

 

𝐴𝑒𝑛 = {
𝑒𝑛−1, 𝑛 ≠ 3

√2𝑒2, 𝑛 = 3
 

 

The operator A is 8-*-parahyponormal, and the invertible operator 

 

𝑈𝑒𝑛 = {

𝑒𝑛+1, 𝑛 ≠ 2
1

3
𝑒3, 𝑛 = 2

 

 

is non unitary. With an easy computation, the operator 𝐵 = 𝑈−1𝐴𝑈 satisfies 

 

‖𝐵⋆𝑒1‖2 = 18 > √8‖𝑒1‖‖𝐵⋆𝐵𝑒1‖ = √8 

 

Thus, 𝐵 is not 8-*-parahyponormal.  

 

Theorem 13.  Let A ∈ ℬ(ℋ) be an (𝑀, 𝑘)-quasi-*-parahyponormal operator. If ran(Ak) =
ℋ, then A is M-*-parahyponormal. 

 

Proof: Let 𝑥 ∈ ℋ. Since 𝑟𝑎𝑛(𝐴𝑘) is dense in ℋ, there exists a sequence (𝑥𝑛)𝑛 in ℋ such that 

lim
𝑛→∞

𝐴𝑘𝑥𝑛 = 𝑥.  Since 𝐴 is (𝑀, 𝑘) -quasi-*-parahyponormal, 

 

‖𝐴⋆𝑥‖2 =  ‖ lim
𝑛→∞

𝐴⋆𝐴𝑘𝑥𝑛‖2 = lim
𝑛→∞

‖ 𝐴⋆𝐴𝑘𝑥𝑛‖2 

≤ √𝑀 lim
𝑛→∞

‖𝐴𝑘𝑥𝑛‖‖𝐴⋆𝐴𝑘+1𝑥𝑛‖ 

≤ √𝑀‖𝑥‖‖𝐴⋆𝐴𝑥‖ 

 

by the continuity of the inner product. Thus, 𝐴 is 𝑀-*-parahyponormal.             ∎ 
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Corollary 14.  Let 𝐴 be a nonzero (𝑀, 𝑘)- quasi-*-parahyponormal operator but not 𝑀-*-

parahyponormal. Then, 𝐴 admits at least a non trivial closed invariant subspace. 

 

Proof: By the absurd, assume that 𝐴 has no non trivial closed invariant subspace. Since 𝐴 is 

not null, 𝑘𝑒𝑟(𝐴) ≠ ℋ and 𝑟𝑎𝑛(𝐴) ≠ {0} are non trivial closed invariant subspaces for 𝐴. 

Thus, we must have 𝑘𝑒𝑟(𝐴) = {0} and 𝑟𝑎𝑛(𝐴) = ℋ. By Theorem 13, 𝐴 is 𝑀-*-

parahyponormal, which contradicts the hypothesis.          ∎ 

 

Theorem 15.  Let 𝐴 ∈ ℬ(ℋ) be an (𝑀, 𝑘)- quasi-*-parahyponormal operator. If 𝑟𝑎𝑛(𝐴𝑘) is 

not dense in ℋ, then 𝐴 admits the matrix representation 𝐴 = (
𝐴1 𝐴2

0 𝐴3
) under the 

decomposition ℋ = 𝑟𝑎𝑛(𝐴𝑘) ⊕ 𝑘𝑒𝑟(𝐴⋆𝑘). Furthermore, 𝐴1 is 𝑀-*-parahyponormal, 𝐴3
𝑘 = 0, 

and 𝜎(𝐴) = 𝜎(𝐴1) ∪ {0}. 
 

Proof: Since 𝐴 is (𝑀, 𝑘)-quasi-*-parahyponormal, 

 

⟨𝐴⋆𝑘(𝑀(𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2)𝐴𝑘𝑦, 𝑦⟩ ≥ 0 

for all 𝑦 ∈ ℋ. Hence, 

⟨(𝑀(𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2)𝐴𝑘𝑦, 𝐴𝑘𝑦⟩ ≥ 0 

 

Thus, for all 𝑥 ∈ 𝑟𝑎𝑛(𝐴𝑘), 
 

⟨(𝑀(𝐴⋆𝐴)2 − 2𝜆𝐴𝐴⋆ + 𝜆2)𝑥, 𝑥⟩ = ⟨(𝑀(𝐴1
⋆𝐴1)2 − 2𝜆𝐴1𝐴1

⋆ + 𝜆2)𝑥, 𝑥⟩ ≥ 0 

 

Consequently, 𝐴1 is 𝑀-parahyponormal. Let now 𝑃 be the orthogonal projection on 

𝑟𝑎𝑛(𝐴𝑘). For all 𝑥 = 𝑥1 + 𝑥2, 𝑦 = 𝑦1 + 𝑦2 ∈ ℋ, we have 

 

⟨𝐴3
𝑘𝑥2, 𝑦2⟩ = ⟨𝐴𝑘(𝐼 − 𝑃)𝑥, (𝐼 − 𝑃)𝑦⟩ = ⟨(𝐼 − 𝑃)𝑥, 𝐴⋆𝑘(𝐼 − 𝑃)𝑦⟩ = 0 

 

Thus, 𝐴3
𝑘 = 0. Furthermore, 𝜎(𝐴1) ∪ 𝜎(𝐴3) = 𝜎(𝐴) ∪ 𝛺, where 𝛺 is the union of 

holes in 𝜎(𝐴) which happen to be a subset of 𝜎(𝐴1) ∩ 𝜎(𝐴3) by [7], Corollary 7], with 

𝜎(𝐴1) ∩ 𝜎(𝐴3) has no interior point, and 𝐴3 is nilpotent. Thus, 𝜎(𝐴) = 𝜎(𝐴1) ∪ {0}.          ∎ 

 

Corollary 16.  Let 𝐴 ∈ ℬ(ℋ) be (𝑀, 𝑘) -quasi-*-parahyponormal. If the restriction 𝐴1 =
𝐴

|𝑟𝑎𝑛(𝐴𝑘)
 is invertible, then 𝐴 is similar to the direct sum of an 𝑀-*-parahyponormal operator 

and a nilpotent operator. 

 

Proof: Let 

𝐴 = (
𝐴1 𝐴2

0 𝐴3
)   on   ℋ = 𝑟𝑎𝑛(𝐴𝑘) ⊕ 𝑘𝑒𝑟(𝐴⋆𝑘) 

 

Then, 𝐴1 is 𝑀-*-parahyponormal by Theorem 15. Since 𝐴1 is invertible, 0 ∉ 𝜎(𝐴). 
Hence, 𝜎(𝐴1) ∩ 𝜎(𝐴3) = ∅. By Rosenblum’s Corollary [8-9], there exists 𝐶 ∈ ℬ(ℋ) for 

which 𝐴1𝐶 − 𝐶𝐴3 = 𝐴2. Thus, 

 

𝐴 = (
𝐼 −𝐶
0 𝐼

) (
𝐴1 0
0 𝐴3

) (
𝐼 𝐶
0 𝐼

) 

The proof is achieved.        ∎ 
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Theorem 17.  The restriction of an (𝑀, 𝑘)-quasi-*-parahyponormal operator 𝐴 ∈ ℬ(ℋ) on a 

closed invariant subspace ℳ ⊂ ℋ is also (𝑀, 𝑘)-quasi-*-parahyponormal. 

 

Proof: Let 𝐴1 = 𝐴|ℳ ,  and let 𝑃 be the orthorprojector on ℳ. Then, 𝐴𝑘𝑃 = 𝑃𝐴𝑘𝑃 and 

𝐴1 = 𝑃𝐴𝑃|ℳ . Hence, the result holds by Theorem 15.           ∎ 

 

Definition 18.  [10] An operator 𝐴 in ℬ(ℋ) is said to have the Single Valued Extension 

Property SVEP at a complex number 𝛼, if for each open neighborhood 𝑉 of 𝛼, the unique 

analytic function 𝑓: 𝑉 → ℋ satisfying 

 

(𝐴 − 𝜆)𝑓(𝜆) = 0 

for all 𝜆 ∈ 𝑉 is 𝑓 ≡ 0. Furthermore, 𝐴 is said to have SVEP if 𝐴 has SVEP at every complex 

number. 

 

Definition 19.  [10]  For 𝐴 ∈ ℬ(ℋ), the smallest integer 𝑚 such that 𝑘𝑒𝑟(𝐴𝑚) = 𝑘𝑒𝑟(𝐴𝑚+1) 

is said to be the ascent of 𝐴, and is denoted by 𝛼(𝐴). If no such integer exists, we shall write 

𝛼(𝐴) = ∞. 
 

Example 1. [11] 𝛼(𝐴) = 1 for a dominant operator 𝐴 ∈ ℬ(ℋ), i.e., 𝑟𝑎𝑛(𝐴 − 𝜆) ⊆
𝑟𝑎𝑛(𝐴 − 𝜆)⋆ for all 𝜆 ∈ ℂ.  
 

Example 2.  Author in  [12] showed that if 𝐴 is a 𝑘-quasi-𝑀-hyponormal operators, i.e., 

 

√𝑀‖(𝐴 − 𝜆)𝐴𝑘𝑥‖ ≥ ‖(𝐴 − 𝜆)⋆𝐴𝑘𝑥‖ 

 

for certain 𝑀 > 0, and all 𝑥 ∈ ℋ, then 𝛼(𝐴) = 𝑘 and 𝛼(𝐴 − 𝜆) = 1, (𝜆 ∈ ℂ, 𝜆 ≠ 0) . 
 

Definition 20.  [10] The smallest integer 𝑚 satisfying 𝑟𝑎𝑛(𝐴𝑚) = 𝑟𝑎𝑛(𝐴𝑚+1) is said to be 

the descent of 𝐴, and is denoted by 𝛿(𝐴). If no such integer exists, we set 𝛿(𝐴) = ∞. 

 

According to [10], if 𝛼(𝐴) and 𝛿(𝐴) are finite, then they are equal. More information 

on these notions can be found in [10] and in [13-14]. We’ve then, 

 

Theorem 21.  If 𝐴 ∈ ℬ(ℋ) is (𝑀, 𝑘)-quasi-*-parahyponormal, then (𝐴 − 𝜇) has finite ascent 

for all complex scalar 𝜇. Furthermore, 𝛼(𝐴) ≤ 𝑘 and 𝛼(𝐴 − 𝜇) = 1. 
 

Proof: Case (i).  𝜇 = 0. Since 𝐴 is (𝑀, 𝑘)-quasi-*-parahyponormal operator, 

 

‖𝐴⋆𝐴𝑘𝑥‖2 ≤ √𝑀‖𝐴𝑘𝑥‖‖𝐴⋆𝐴𝑘+1𝑥‖ 

 

for certain 𝑀 > 0. Let 𝑥 ∈ 𝑘𝑒𝑟(𝐴𝑘+1). Then, 𝐴⋆𝐴𝑘𝑥 = 0. Hence, for all 𝑧 ∈ ℋ 

 

⟨𝐴⋆𝐴𝑘𝑥, 𝑧⟩ = 0 

i.e., 

⟨𝐴𝑘𝑥, 𝐴𝑧⟩ = 0 

 

For all 𝑧 ∈ 𝐻. Thus, 𝐴𝑘𝑥 ∈ (𝑟𝑎𝑛(𝐴))
⊥

.  
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Since 𝑟𝑎𝑛(𝐴𝑘) ⊂ 𝑟𝑎𝑛(𝐴), (𝑟𝑎𝑛(𝐴))
⊥

⊂ (𝑟𝑎𝑛(𝐴𝑘))
⊥

. Therefore, 

 

𝐴𝑘𝑥 ∈ (𝑟𝑎𝑛𝐴𝑘)⊥ ∩ 𝑟𝑎𝑛(𝐴𝑘) = {0} 

 

and so 𝑥 ∈ 𝑘𝑒𝑟(𝐴𝑘). 
 

Case (ii). 𝜇 ≠ 0. Since 𝑘𝑒𝑟(𝐴 − 𝜇) ⊂ 𝑘𝑒𝑟(𝐴 − 𝜇)⋆ by , 𝑘𝑒𝑟(𝐴 − 𝜇) reduces 𝐴. Then, 

 

ℋ = 𝑘𝑒𝑟(𝐴 − 𝜇)⊥ ⊕ 𝑘𝑒𝑟(𝐴 − 𝜇) 

 

Let then 𝑥 = 𝑥1 + 𝑥2 ∈ ℋ with 𝑥1 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇)⊥ and 𝑥2 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇). Hence, 

 

𝑥 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇)2 ⇒ (𝐴 − 𝜇)2𝑥 = 0 = (𝐴 − 𝜇)2𝑥1 

                                                               ⇒ (𝐴 − 𝜇)𝑥1 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇) 

                                                                ⇒ (𝐴 − 𝜇)𝑥1 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇)⋆ ∩ 𝑟𝑎𝑛(𝐴 − 𝜇) = {0} 

                                                              ⇒ 𝑥1 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇) 

                                                              ⇒ 𝑥1 = 0 ⇒ 𝑥 = 𝑥2 ∈ 𝑘𝑒𝑟(𝐴 − 𝜇) 

 

Therefore, 𝑘𝑒𝑟(𝐴 − 𝜇)2 ⊂ 𝑘𝑒𝑟(𝐴 − 𝜇)2, and 𝛼(𝐴 − 𝜇) = 1.            ∎ 

 

Corollary 22.  (𝑀, 𝑘)-quasi-parahyponormal operators have SVEP. 

 

Proof: An immediate consequence of [10, Theorem 3.8] and Theorem 21.         ∎ 

 

Definition 23.  [10]  For an operator 𝐴 ∈ ℬ(ℋ), the local resolvent set of 𝐴 at a vector 

𝑥 ∈ ℋ, denoted by 𝜌𝐴(𝑥), is defined to consist of complex elements 𝑧0 such that there exists 

an analytic function 𝑓(𝑧) defined in a neighborhood of 𝑧0, with values in ℋ, for which 

(𝐴 − 𝑧)𝑓(𝑧) = 𝑥. 
 

Definition 24. [10]   The set ℂ\𝜌𝐴(𝑥) is called the local spectrum of 𝐴 at a vector 𝑥 in ℋ.  
We’ve then the following important result: 

 

Theorem 25.   Let 𝐴 = (
𝐴1 𝐴2

0 𝐴3
) be an (𝑀, 𝑘)-quasi-*-parahyponormal operator with 

respect to the decomposition ℋ = 𝑟𝑎𝑛(𝐴𝑘) ⊕ 𝑘𝑒𝑟(𝐴⋆𝑘) . Then, for all = 𝑥1 + 𝑥2 ∈ ℋ: 

a. 𝜎𝐴3
(𝑥2) ⊂ 𝜎𝐴(𝑥1 + 𝑥2) 

b. 𝜎𝐴1
(𝑥) = 𝜎𝐴1

(𝑥1 + 0) 

 

Proof:  a. Let 𝑧0 ∈ 𝜌𝐴(𝑥1 + 𝑥2). Then, there exists a neighborhood 𝑈 of 𝑧0 and an analytic 

function 𝑓(𝑧) defined on 𝑈, with values in ℋ, for which 

 

(𝐴 − 𝑧)𝑓(𝑧) = 𝑥,  𝑧 ∈ 𝑈 (2)  

 

Let 𝑓 = 𝑓1 + 𝑓2 where 𝑓1, 𝑓2 are in the spaces 𝑂(𝑈, 𝑟𝑎𝑛(𝐴𝑘)) and 𝑂(𝑈, 𝑘𝑒𝑟(𝐴⋆𝑘)) 

respectively, consisting of analytic functions on 𝑈 with values in ℋ, with respect to the 

uniform topology [1]. Equality (2) can then be written 
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(
𝐴1 − 𝑧 𝐴2

0 𝐴3 − 𝑧
) (

𝑓1(𝑧)

𝑓2(𝑧)
) = (

𝑥1

𝑥2
) 

Then 

                         (𝐴3 − 𝑧)𝑓2(𝑧) = 𝑥2, 𝑧 ∈ 𝑈 

 

Hence, 𝑧0 ∈ 𝜌𝑎3
(𝑥2). Thus, (a) holds by passing to the complement. 

 

b. If 𝑧1 ∈ 𝜌𝐴(𝑥1 + 0), then, there exists a neighborhood 𝑉1 of 𝑧1 and an analytic function 𝑔 

defined on 𝑉1 with values in ℋ verifying 

 

(𝐴 − 𝑧)𝑓(𝑧) = 𝑥1 + 0, 𝑧 ∈ 𝑉1 (3)  

 

Let 𝑔 = 𝑔1 + 𝑔2, where 𝑔1 ∈ 𝑂 (𝑉1, 𝑟𝑎𝑛(𝐴𝑘)), 𝑔2 ∈ 𝑂(𝑉1, 𝑘𝑒𝑟(𝐴⋆𝑘)) are as in (a). 

From equation (3) we obtain 

 
(𝐴1 − 𝑧)𝑔1(𝑧) + 𝐴2𝑔2(𝑧) = 𝑥1   

and  
(𝐴3 − 𝑧)𝑔2(𝑧) = 0, 𝑧 ∈ 𝑉1 

 

Since 𝐴3 is nilpotent by Theorem 15, 𝐴3 has SVEP by [10]. Thus, 𝑔2(𝑧) = 0. 
Consequently, (𝐴1 − 𝑧)𝑔1(𝑧) = 𝑥1. Therefore, 𝑧1 ∈ 𝜌𝐴1

(𝑥1), and then 𝜌𝐴(𝑥1 + 0) ⊂ 𝜌𝐴1
(𝑥1). 

Thus, 𝜎𝐴1
(𝑥) = 𝜎𝐴1

(𝑥1 + 0). 

Now, if 𝑧2 ∈ 𝜌𝐴1
(𝑥1), then, there exists a neighborhood 𝑉2 of 𝑧2 and an analytic 

function ℎ from 𝑉2 onto ℋ, such that (𝐴1 − 𝑧)ℎ(𝑧) = 𝑥1, for all ∈ 𝑉2 . Thus, 

 

(𝐴 − 𝑧)(ℎ(𝑧) + 0) = (𝐴1 − 𝑧)ℎ(𝑧) = 𝑥1 = 𝑥1 + 0 

 

Hence, 𝑧2 ∈ 𝜌𝐴(𝑥1 + 0).               ∎ 

 

Remarks 1. Note that if 𝐴 is (𝑀, 𝑘)-quasi-*-parahyponormal, then for all 𝛼 ∈ ℂ and all 

𝑥 ∈ ℋ, 
 

‖(𝛼𝐴⋆)(𝛼𝐴)𝑘𝑥‖2 = |𝛼|2𝑘+2‖𝐴⋆𝐴𝑘𝑥‖2 ≤ |𝛼|2𝑘+2√𝑀‖𝐴𝑘𝑥‖‖𝐴⋆𝐴𝑘+1𝑥‖ 

= √𝑀‖(𝛼𝐴)𝑘𝑥‖‖(𝛼𝐴)⋆(𝛼𝐴)𝑘+1𝑥‖ 

 

Hence, 𝛼𝐴 is also (𝑀, 𝑘)-quasi-*-parahyponormal. 

 

Remarks 2. On the other hand, operators 𝐴 = (
1 0
1 1

)  and 𝐵 = (
−1 0
0 −1

) are 2-*-

parahyponormal. However, for 𝑆 =
1

2
(𝐴 + 𝐵) and 𝑥 = (0,1) ∈ ℂ2, we get 

 

‖𝑆⋆𝑥‖2 =
1

4
> √2‖𝑥‖‖𝑆⋆𝑆𝑥‖ = 0 

 

This contradicts the inequality (1). Hence, 𝑆 is not 2-*-parayponormal. Thus, the 

above class is not convex. 
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Remarks 3. Also, for the previous operator 𝐴 = (
1 1
1 0

), the operator 𝐴 − 𝐼 satisfies 

 

‖(𝐴 − 𝐼)(0,1)‖2 = 1 > √2‖(0,1)‖‖(𝐴 − 𝐼)(𝐴 − 𝐼)⋆(0,1)‖ = 0 

 

Hence, 𝐴 − 𝐼 is not 2-*-parahyponormal. This shows that the considered class is not 

translation invariant. 

 

 

3. CONCLUSION 

 

 

We’ve shown certain fundamental properties of the considered class of operators. A 

matrix representation, the SVEP, the finite ascent as well as different imoprtant properties 

have been established. 
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