ORIGINAL PAPER

A LARGE CLASS EXTENDING *-PARAHYPONORMAL OPERATORS

AISSA NASLI BAKIR¹

Manuscript received: 27.10.2022; Accepted paper: 30.03.2023; Published online: 30.06.2023.

Abstract. Properties of a large class of (M,k)-*-quasi-parahyponormal operators are established in the present article. It is shown that these operators have finite ascent and the single valued extension property. The matrix representation and the multicyclicity on a separable complex Hilbert space are proved too.

Keywords: M-*-*parahyponormal operator; k-quasi-*-parahyponormal operator; finite ascent; multicyclic operators.*

1. INTRODUCTION

Let \mathcal{H} be an infinite dimensional separable complex Hilbert space, and let $\mathcal{B}(\mathcal{H})$ denote the Banach algebra of all bounded linear operators on \mathcal{H} . An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be:

- Positive if $\langle Ax, x \rangle \ge 0$ for each $x \in \mathcal{H}$.
- Isometry if $A^*A = I$, where *I* is the identity operator on \mathcal{H} .
- *-paranormal if for all $x \in \mathcal{H}$, $||A^*x||^2 \le ||A^2x|| ||x||$.
- Quasi-*-paranormal if $||A^*Ax||^2 \le ||A^2Ax|| ||Ax||$ for all $x \in \mathcal{H}$.
- k-quasi-*-paranormal if $||A^*A^kx||^2 \le ||A^2A^kx|| ||A^kx||$ for all $x \in \mathcal{H}$.
- *-class A if $|A^2| |A^*|^2 \ge 0$.
- k-quasi-*-class A if $A^{*k}(|A^2| |A^*|^2)A^k \ge 0$.

where $|A| = (A^*A)^{\frac{1}{2}}$ denotes the modulus of *A*. Duggal, Jeon and Kim introduced the *class A operators in [1], and proved that they are contained in the class of *-paranormal operators. Also, Mecheri introduced the quasi-*-class A operators in [2] and showed that a quasi-*-class A operator is quasi-*-paranormal. Authors in [3] introduced the class of *k*quasi-*-paranormal operators and gave several basic and spectral properties for such a class of operators. Senthilkumar and Parvatham in [4] presented the classes of *-parahyponormal and *k* quasi-*-parahyponormal operators, and showed certain of their properties. In the following, it will be introduced a large class of (*M*, *k*)-quasi-*-parahyponormal operators generalizing the above classes. We present their matrix representation, their ascent and the single valued extension property, briefly SVEP. Different related properties are also established.

¹ Hassiba Benbouali University of Chlef, Department of Mathematics, Laboratory of Mathematics and Applications LMA, 02180 Ouled Fares, Chlef, Algeria. E-mail: <u>a.nasli@univ-chlef.dz</u>.

2. RESULTS

2.1. CLASS OF k-QUASI-*-PARAHYPONORMAL OPERATORS

Definition 1. [4] An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be *-parahyponormal if

$$(A^*A)^2 - 2\lambda AA^* + \lambda^2 \ge 0$$

for all $\lambda > 0$.

Definition 2. [4] An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be k -quasi-*-parahyponormal for some integer k if

 $A^{\star k}((A^{\star}A)^2 - 2\lambda AA^{\star} + \lambda^2)A^k \ge 0$

for all $\lambda > 0$. This definition is equivalent to

$$||A^*A^kx||^2 \le ||A^kx|| ||A^*A^{k+1}x||$$

for all $x \in \mathcal{H}$.

Proposition 3. Let *S* be the bilateral weighted shift defined on the usual Hilbert space ℓ_2 by $Se_n = \alpha_n e_{n+1}$, where $(e_n)_n$ is the standard basis, and $(\alpha_n)_n$ is a decreasing complex sequence. Then, *S* is *k* -quasi-*-parahyponormal if and only if $|\alpha_{n+k-1}| \leq |\alpha_{n+k}|$ for all *n*.

Proof: We have

$$||S^*S^k e_n||^2 \le ||S^k e_n|| ||S^*S^{k+1} e_n||$$

Hence, for all *n*,

$$|\alpha_{n}|^{2} |\alpha_{n+1}|^{2} \dots |\alpha_{n+k-2}|^{2} |\alpha_{n+k-1}|^{4} \leq |\alpha_{n}|^{2} |\alpha_{n+1}|^{2} \dots |\alpha_{n+k-2}|^{2} |\alpha_{n+k-1}|^{2} |\alpha_{n+k}|^{2}$$

Thus,

$$|\alpha_{n+k-1}| \le |\alpha_{n+k}|$$

for all *n*.

Theorem 4. Unitarily equivalent operators to a k-quasi-*-parahyponormal operator are also k-quasi-*-parahyponormal.

Proof: Let A be a k-quasi-*-parahyponormal operator, and let $B \in \mathcal{B}(\mathcal{H})$ be unitarily equivalent to A. Then, there exists a unitary operator U on H satisfying $B = U^*AU$. Hence,

$$B^{*k}((B^*B)^2 - 2\lambda BB^* + \lambda^2)B^k =$$

= $U^*A^{*k}U(U^*(A^*A)^2U - 2\lambda U^*AA^*U + \lambda^2)U^*A^kU$
= $U^*A^{*k}(A^*A)^2A^kU - 2\lambda U^*A^{*k}AA^*A^kU + \lambda^2U^*A^{*k}A^kU$
= $U^*A^{*k}((A^*A)^2 - 2\lambda AA^* + \lambda^2)A^kU \ge 0$

Thus, *B* is *k*-quasi-*-parahyponormal.

Theorem 5. Let $A \in \mathcal{B}(\mathcal{H})$ be a *k*-quasi-*-parahyponormal operator, and let $S \in \mathcal{B}(\mathcal{H})$ be an isometry. If *A* commutes with *S*, then *AS* is also *k*-quasi-*-parahyponormal.

Proof: Since *A* is *k*-quasi-*-parahyponormal and $||S^*|| \le 1$,

$$\|S^*A^*A^kx\|^2 \le \|S^*\|^2 \|A^*A^kx\|^2 \le \|A^kx\| \|A^*A^{k+1}x\|$$

Hence,

$$\langle A^{*k} [(A^*A)^2 - 2\lambda SAA^*S^* + \lambda^2] A^k x, x \rangle = = \|A^k A^{k+1} x\|^2 - 2\lambda \|S^*A^*A^k x\|^2 + \lambda^2 \|A^k x\|^2 \ge \|A^k A^{k+1} x\|^2 - 2\lambda \|A^k x\| \|A^*A^{k+1} x\| + \lambda^2 \|A^k x\|^2 \ge 0$$

for all $x \in \mathcal{H}$ and all $\lambda > 0$. Thus,

$$A^{\star k}[(A^{\star}A)^2 - 2\lambda SAA^{\star}S^{\star} + \lambda^2]A^k$$

is a positive operator. Therefore,

$$(AS)^{*k}(((AS)^{*}AS)^{2} - 2\lambda(AS)(AS)^{*} + \lambda^{2})(AS)^{k} =$$

= $S^{*k}A^{*k}[(A^{*}A)^{2} - 2\lambda SAA^{*}S^{*} + \lambda^{2}]A^{k}S^{k} \ge 0$

This achieves the proof.

Let $A \in \mathcal{B}(\mathcal{H})$. Denote by $\mathcal{R}(\sigma(A))$ for the algebra of all rational functions with poles of $\sigma(A)$ rather than the set of all rational analytic functions on $\sigma(A)$.

Definition 6. [5] An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be *n*-multicyclic, if there exist *n* (generating) vectors x_1, x_2, \ldots, x_n in \mathcal{H} such that

$$\forall \{g(A)x_i, 1 \le i \le n, g \in \mathcal{R}(\sigma(A))\} = \mathcal{H}$$

Denote by ker(A) and ran(A) respectively for the null space and the range of A. Then, we have :

Theorem 7. If A is an *n*-multicyclic k-quasi-*-parahyponormal operator, then its restriction on $\overline{ran(A^k)}$ is also *n*-multicyclic.

Proof: Put

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$$

on the decomposition $\mathcal{H} = \overline{ran(A^k)} \bigoplus ker(A^{\star k})$. Since $\sigma(A_1) \subset \sigma(A)$ by [4, Theorem 2.1], $\mathcal{R}(\sigma(A_1)) \subset \mathcal{R}(\sigma(A))$. The operator *A* is *n*-multicyclic. Then, there exist *n* generating vectors $x_1, x_2, ..., x_n \in \mathcal{H}$ for which

$$\forall \{g(A)x_i, 1 \le i \le n, g \in \mathcal{R}(\sigma(A))\} = \mathcal{H}$$

Aissa Nasli Bakir

Put $y_i = A^k x_i$, $1 \le i \le n$. Hence,

$$\begin{aligned} & \forall \{g(A_1)y_i, 1 \leq i \leq n, g \in \mathcal{R}\big(\sigma(A)\big)\} = \forall \{g(A_1)A^kx_i, 1 \leq i \leq n, g \in \mathcal{R}\big(\sigma(A)\big)\} \\ &= \forall \{g(A)A^kx_i, 1 \leq i \leq n, g \in \mathcal{R}\big(\sigma(A)\big)\} \\ &= \forall \{A^kg(A)x_i, 1 \leq i \leq n, g \in \mathcal{R}\big(\sigma(A)\big)\} \\ &= \overline{ran(A^k)}. \end{aligned}$$

But,

$$\forall \{g(A_1)y_i, 1 \le i \le n, g \in \mathcal{R}(\sigma(A))\} \subset \forall \{g(A_1)y_i, 1 \le i \le n, g \in \mathcal{R}(\sigma(A_1))\}.$$

Thus,

$$\overline{ran(A^k)} \subset \bigvee \{g(A_1)y_i, 1 \le i \le n, g \in \mathcal{R}(\sigma(A_1))\}$$

Therefore, $\{y_i\}_{i=1}^n$ are *n*-generating vectors of A_1 , and A_1 is then *n*-muticyclic. The proof is achieved.

2.2. CLASS OF (M, k)-QUASI-*-PARAHYPONORMAL OPERATORS

Interesting properties of (M, k)-quasi-*-parahyponormal operators are shown in this section. In particular, the matrix representation, the finite ascent and the SVEP are presented.

Definition 8. [6] An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be *M*-*-parahyponormal if there exists M > 0 satisfying

$$M(A^*A)^2 - 2\lambda AA^* + \lambda^2 \ge 0$$

We introduce a new class of (M, k)-quasi-parahyponormal operators as follows:

Definition 9. An operator $A \in \mathcal{B}(\mathcal{H})$ is said to be (M, k)-quasi-*-parahyponormal for some integer k, if there exists M > 0, satisfying

$$A^{\star k}(M(A^{\star}A)^2 - 2\lambda AA^{\star} + \lambda^2)A^k \ge 0$$

This definition is clearly equivalent to

$$\|A^*A^kx\|^2 \le \sqrt{M} \|A^kx\| \|A^*A^{k+1}x\|$$
(1)

for all $x \in \mathcal{H}$.

Inequality (1) shows that this class of operators is nested with respect to M, i.e., an (M,k)-quasi-*-parahyponormal operator is (M',k)-quasi-*-parahyponormal for each 0 < M < M'.

Remark 10. Classes of (M, k)-quasi-*-parahyponormal operators are not identical with respect to k. In fact, let's consider the unilateral weighted right shift on $\ell_2(\mathbb{N})$ defined by

 $Ae_1 = 0$, $Ae_{n+1} = \alpha_n e_n$, where $\alpha_1 = \alpha_3 = \frac{1}{2}$, $\alpha_2 = \frac{1}{4}$, $\alpha_n = 1$, $n \ge 4$, and (e_n) is the standard basis of $\ell_2(\mathbb{N})$. It's easy to show that A is M-*-quasi-parahyponormal. However,

$$||A^*e_1||^2 = \frac{1}{4} > \sqrt{M}||e_1|| ||A^*Ae_1|| = 0$$

which contradicts the inequality (1). Hence, A is not M-*-parahyponormal. Analogously to proofs of Theorems 4 and 5, we can have:

Theorem 11.

1. A unitarily equivalent operator B to an (M, k)-quasi-*-parahyponormal operator A is also (M, k)-quasi-*-parahyponormal.

2. If A is (M, k)-quasi-*-parahyponormal operator, and S is an isometry that commutes with A, then the product AS is (M, k)-quasi-*-parahyponormal.

Remark 12. Property (1) of Theorem 11 needs not to be in general true if *A* and *B* are similar operators, i.e., there exists an invertible operator *U* for which AU=UB, and *A* and *B* are not unitarily equivalent. Indeed, let's consider the bilateral weighted shift *A* defined on the Hilbert space $\ell_2(\mathbb{Z})$ by

$$Ae_{n} = \begin{cases} e_{n-1}, & n \neq 3\\ \sqrt{2}e_{2}, & n = 3 \end{cases}$$

The operator A is 8-*-parahyponormal, and the invertible operator

$$Ue_{n} = \begin{cases} e_{n+1}, & n \neq 2\\ \frac{1}{3}e_{3}, & n = 2 \end{cases}$$

is non unitary. With an easy computation, the operator $B = U^{-1}AU$ satisfies

$$\|B^*e_1\|^2 = 18 > \sqrt{8}\|e_1\|\|B^*Be_1\| = \sqrt{8}$$

Thus, *B* is not 8-*-parahyponormal.

Theorem 13. Let $A \in \mathcal{B}(\mathcal{H})$ be an (M, k)-quasi-*-parahyponormal operator. If $\overline{ran(A^k)} = \mathcal{H}$, then A is M-*-parahyponormal.

Proof: Let $x \in \mathcal{H}$. Since $ran(A^k)$ is dense in \mathcal{H} , there exists a sequence $(x_n)_n$ in \mathcal{H} such that $\lim_{n \to \infty} A^k x_n = x$. Since A is (M, k) -quasi-*-parahyponormal,

$$\begin{aligned} \|A^*x\|^2 &= \left\| \lim_{n \to \infty} A^*A^k x_n \|^2 = \lim_{n \to \infty} \|A^*A^k x_n\|^2 \\ &\leq \sqrt{M} \lim_{n \to \infty} \|A^k x_n\| \|A^*A^{k+1} x_n\| \\ &\leq \sqrt{M} \|x\| \|A^*Ax\| \end{aligned}$$

by the continuity of the inner product. Thus, A is M-*-parahyponormal.

Corollary 14. Let *A* be a nonzero (M, k)- quasi-*-parahyponormal operator but not *M*-*-parahyponormal. Then, *A* admits at least a non trivial closed invariant subspace.

Proof: By the absurd, assume that A has no non trivial closed invariant subspace. Since A is not null, $ker(A) \neq \mathcal{H}$ and $\overline{ran(A)} \neq \{0\}$ are non trivial closed invariant subspaces for A. Thus, we must have $ker(A) = \{0\}$ and $\overline{ran(A)} = \mathcal{H}$. By Theorem 13, A is M-*-parahyponormal, which contradicts the hypothesis.

Theorem 15. Let $A \in \mathcal{B}(\mathcal{H})$ be an (M, k)- quasi-*-parahyponormal operator. If $ran(A^k)$ is not dense in \mathcal{H} , then A admits the matrix representation $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$ under the decomposition $\mathcal{H} = \overline{ran(A^k)} \bigoplus ker(A^{*k})$. Furthermore, A_1 is M-*-parahyponormal, $A_3^k = 0$, and $\sigma(A) = \sigma(A_1) \cup \{0\}$.

Proof: Since *A* is (*M*, *k*)-quasi-*-parahyponormal,

for all
$$y \in \mathcal{H}$$
. Hence,
 $\langle A^{*k} (M(A^*A)^2 - 2\lambda AA^* + \lambda^2)A^k y, y \rangle \ge 0$
 $\langle (M(A^*A)^2 - 2\lambda AA^* + \lambda^2)A^k y, A^k y \rangle \ge 0$

Thus, for all $x \in \overline{ran(A^k)}$,

$$\langle (M(A^*A)^2 - 2\lambda AA^* + \lambda^2)x, x \rangle = \langle (M(A_1^*A_1)^2 - 2\lambda A_1A_1^* + \lambda^2)x, x \rangle \ge 0$$

Consequently, A_1 is *M*-parahyponormal. Let now *P* be the orthogonal projection on $\overline{ran(A^k)}$. For all $x = x_1 + x_2$, $y = y_1 + y_2 \in \mathcal{H}$, we have

$$\langle A_3^k x_2, y_2 \rangle = \langle A^k (I - P) x, (I - P) y \rangle = \langle (I - P) x, A^{\star k} (I - P) y \rangle = 0$$

Thus, $A_3^k = 0$. Furthermore, $\sigma(A_1) \cup \sigma(A_3) = \sigma(A) \cup \Omega$, where Ω is the union of holes in $\sigma(A)$ which happen to be a subset of $\sigma(A_1) \cap \sigma(A_3)$ by [7], Corollary 7], with $\sigma(A_1) \cap \sigma(A_3)$ has no interior point, and A_3 is nilpotent. Thus, $\sigma(A) = \sigma(A_1) \cup \{0\}$.

Corollary 16. Let $A \in \mathcal{B}(\mathcal{H})$ be (M, k) -quasi-*-parahyponormal. If the restriction $A_1 = A_{|ran(A^k)|}$ is invertible, then A is similar to the direct sum of an *M*-*-parahyponormal operator and a nilpotent operator.

Proof: Let

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix} \text{ on } \mathcal{H} = \overline{ran(A^k)} \bigoplus ker(A^{\star k})$$

Then, A_1 is *M*-*-parahyponormal by Theorem 15. Since A_1 is invertible, $0 \notin \sigma(A)$. Hence, $\sigma(A_1) \cap \sigma(A_3) = \emptyset$. By Rosenblum's Corollary [8-9], there exists $C \in \mathcal{B}(\mathcal{H})$ for which $A_1C - CA_3 = A_2$. Thus,

$$A = \begin{pmatrix} I & -C \\ 0 & I \end{pmatrix} \begin{pmatrix} A_1 & 0 \\ 0 & A_3 \end{pmatrix} \begin{pmatrix} I & C \\ 0 & I \end{pmatrix}$$

The proof is achieved.

Theorem 17. The restriction of an (M, k)-quasi-*-parahyponormal operator $A \in \mathcal{B}(\mathcal{H})$ on a closed invariant subspace $\mathcal{M} \subset \mathcal{H}$ is also (M, k)-quasi-*-parahyponormal.

Proof: Let $A_1 = A_{|\mathcal{M}}$, and let *P* be the orthorprojector on \mathcal{M} . Then, $A^k P = P A^k P$ and $A_1 = P A P_{|\mathcal{M}}$. Hence, the result holds by Theorem 15.

Definition 18. [10] An operator A in $\mathcal{B}(\mathcal{H})$ is said to have the Single Valued Extension Property SVEP at a complex number α , if for each open neighborhood V of α , the unique analytic function $f: V \to \mathcal{H}$ satisfying

$$(A - \lambda)f(\lambda) = 0$$

for all $\lambda \in V$ is $f \equiv 0$. Furthermore, A is said to have SVEP if A has SVEP at every complex number.

Definition 19. [10] For $A \in \mathcal{B}(\mathcal{H})$, the smallest integer *m* such that $ker(A^m) = ker(A^{m+1})$ is said to be the ascent of *A*, and is denoted by $\alpha(A)$. If no such integer exists, we shall write $\alpha(A) = \infty$.

Example 1. [11] $\alpha(A) = 1$ for a dominant operator $A \in \mathcal{B}(\mathcal{H})$, i.e., $ran(A - \lambda) \subseteq ran(A - \lambda)^*$ for all $\lambda \in \mathbb{C}$.

Example 2. Author in [12] showed that if A is a k-quasi-M-hyponormal operators, i.e.,

$$\sqrt{M} \| (A - \lambda) A^k x \| \ge \| (A - \lambda)^* A^k x \|$$

for certain M > 0, and all $x \in \mathcal{H}$, then $\alpha(A) = k$ and $\alpha(A - \lambda) = 1$, $(\lambda \in \mathbb{C}, \lambda \neq 0)$.

Definition 20. [10] The smallest integer *m* satisfying $ran(A^m) = ran(A^{m+1})$ is said to be the descent of *A*, and is denoted by $\delta(A)$. If no such integer exists, we set $\delta(A) = \infty$.

According to [10], if $\alpha(A)$ and $\delta(A)$ are finite, then they are equal. More information on these notions can be found in [10] and in [13-14]. We've then,

Theorem 21. If $A \in \mathcal{B}(\mathcal{H})$ is (M, k)-quasi-*-parahyponormal, then $(A - \mu)$ has finite ascent for all complex scalar μ . Furthermore, $\alpha(A) \leq k$ and $\alpha(A - \mu) = 1$.

Proof: Case (i). $\mu = 0$. Since A is (M, k)-quasi-*-parahyponormal operator,

$$||A^*A^kx||^2 \le \sqrt{M} ||A^kx|| ||A^*A^{k+1}x||$$

for certain M > 0. Let $x \in ker(A^{k+1})$. Then, $A^*A^k x = 0$. Hence, for all $z \in \mathcal{H}$

i.e.,

$$\langle A^* A^k x, z \rangle = 0$$
$$\langle A^k x, Az \rangle = 0$$

For all $z \in H$. Thus, $A^k x \in (ran(A))^{\perp}$.

Since $ran(A^k) \subset ran(A)$, $(ran(A))^{\perp} \subset (ran(A^k))^{\perp}$. Therefore, $A^k x \in (ranA^k)^{\perp} \cap ran(A^k) = \{0\}$

and so $x \in ker(A^k)$.

Case (ii). $\mu \neq 0$. Since $ker(A - \mu) \subset ker(A - \mu)^*$ by , $ker(A - \mu)$ reduces A. Then,

$$\mathcal{H} = ker(A - \mu)^{\perp} \bigoplus ker(A - \mu)$$

Let then $x = x_1 + x_2 \in \mathcal{H}$ with $x_1 \in ker(A - \mu)^{\perp}$ and $x_2 \in ker(A - \mu)$. Hence,

$$\begin{aligned} x \in ker(A - \mu)^2 &\Rightarrow (A - \mu)^2 x = 0 = (A - \mu)^2 x_1 \\ &\Rightarrow (A - \mu) x_1 \in ker(A - \mu) \\ &\Rightarrow (A - \mu) x_1 \in ker(A - \mu)^* \cap ran(A - \mu) = \{0\} \\ &\Rightarrow x_1 \in ker(A - \mu) \\ &\Rightarrow x_1 = 0 \Rightarrow x = x_2 \in ker(A - \mu) \end{aligned}$$

Therefore, $ker(A - \mu)^2 \subset ker(A - \mu)^2$, and $\alpha(A - \mu) = 1$.

Corollary 22. (*M*, *k*)-quasi-parahyponormal operators have SVEP.

Proof: An immediate consequence of [10, Theorem 3.8] and Theorem 21.

Definition 23. [10] For an operator $A \in \mathcal{B}(\mathcal{H})$, the local resolvent set of A at a vector $x \in \mathcal{H}$, denoted by $\rho_A(x)$, is defined to consist of complex elements z_0 such that there exists an analytic function f(z) defined in a neighborhood of z_0 , with values in \mathcal{H} , for which (A - z)f(z) = x.

Definition 24. [10] The set $\mathbb{C}\setminus\rho_A(x)$ is called the local spectrum of *A* at a vector *x* in \mathcal{H} . We've then the following important result:

Theorem 25. Let $A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$ be an (M, k)-quasi-*-parahyponormal operator with respect to the decomposition $\mathcal{H} = \overline{ran(A^k)} \oplus ker(A^{\star k})$. Then, for all $= x_1 + x_2 \in \mathcal{H}$: a. $\sigma_{A_3}(x_2) \subset \sigma_A(x_1 + x_2)$ b. $\sigma_{A_1}(x) = \sigma_{A_1}(x_1 + 0)$

Proof: a. Let $z_0 \in \rho_A(x_1 + x_2)$. Then, there exists a neighborhood U of z_0 and an analytic function f(z) defined on U, with values in \mathcal{H} , for which

$$(A-z)f(z) = x, \ z \in U \tag{2}$$

Let $f = f_1 + f_2$ where f_1, f_2 are in the spaces $O(U, ran(A^k))$ and $O(U, ker(A^{\star k}))$ respectively, consisting of analytic functions on U with values in \mathcal{H} , with respect to the uniform topology [1]. Equality (2) can then be written

$$\begin{pmatrix} A_1 - z & A_2 \\ 0 & A_3 - z \end{pmatrix} \begin{pmatrix} f_1(z) \\ f_2(z) \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Then

$$(A_3 - z)f_2(z) = x_2, z \in U$$

Hence, $z_0 \in \rho_{a_3}(x_2)$. Thus, (a) holds by passing to the complement.

b. If $z_1 \in \rho_A(x_1 + 0)$, then, there exists a neighborhood V_1 of z_1 and an analytic function g defined on V_1 with values in \mathcal{H} verifying

$$(A - z)f(z) = x_1 + 0, z \in V_1$$
(3)

Let $g = g_1 + g_2$, where $g_1 \in O(V_1, \overline{ran(A^k)})$, $g_2 \in O(V_1, ker(A^{\star k}))$ are as in (a). From equation (3) we obtain

and

$$(A_3 - z)g_2(z) = 0, z \in V_1$$

 $(A_1 - z)g_1(z) + A_2g_2(z) = x_1$

Since A_3 is nilpotent by Theorem 15, A_3 has SVEP by [10]. Thus, $g_2(z) = 0$. Consequently, $(A_1 - z)g_1(z) = x_1$. Therefore, $z_1 \in \rho_{A_1}(x_1)$, and then $\rho_A(x_1 + 0) \subset \rho_{A_1}(x_1)$. Thus, $\sigma_{A_1}(x) = \sigma_{A_1}(x_1 + 0)$.

Now, if $z_2 \in \rho_{A_1}(x_1)$, then, there exists a neighborhood V_2 of z_2 and an analytic function h from V_2 onto \mathcal{H} , such that $(A_1 - z)h(z) = x_1$, for all $\in V_2$. Thus,

$$(A - z)(h(z) + 0) = (A_1 - z)h(z) = x_1 = x_1 + 0$$

Hence, $z_2 \in \rho_A(x_1 + 0)$.

Remarks 1. Note that if A is (M, k)-quasi-*-parahyponormal, then for all $\alpha \in \mathbb{C}$ and all $x \in \mathcal{H}$,

$$\|(\alpha A^{*})(\alpha A)^{k}x\|^{2} = |\alpha|^{2k+2} \|A^{*}A^{k}x\|^{2} \le |\alpha|^{2k+2} \sqrt{M} \|A^{k}x\| \|A^{*}A^{k+1}x\|$$
$$= \sqrt{M} \|(\alpha A)^{k}x\| \|(\alpha A)^{*}(\alpha A)^{k+1}x\|$$

Hence, αA is also (*M*, *k*)-quasi-*-parahyponormal.

Remarks 2. On the other hand, operators $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ are 2-*parahyponormal. However, for $S = \frac{1}{2}(A + B)$ and $x = (0,1) \in \mathbb{C}^2$, we get

$$||S^*x||^2 = \frac{1}{4} > \sqrt{2}||x|| ||S^*Sx|| = 0$$

This contradicts the inequality (1). Hence, S is not 2-*-parayponormal. Thus, the above class is not convex.

Remarks 3. Also, for the previous operator $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$, the operator A - I satisfies

$$||(A - I)(0,1)||^2 = 1 > \sqrt{2}||(0,1)|||(A - I)(A - I)^*(0,1)|| = 0$$

Hence, A - I is not 2-*-parahyponormal. This shows that the considered class is not translation invariant.

3. CONCLUSION

We've shown certain fundamental properties of the considered class of operators. A matrix representation, the SVEP, the finite ascent as well as different imoprtant properties have been established.

REFERENCES

- [1] Duggal, B.P, Jeon, I.H., Kim, I.H., *Linear Algebra and its Applications*, **436**, 954, 2012.
- [2] Mecheri, S., *Studia Mathematica*, **208**, 87, 2012.
- [3] Hoxha, I, Braha, N L., Journal of Inequalities and Applications, 2013, 350, 2013.
- [4] Senthilkumar, S., Parvatham, S., Journal of Informatics and Mathematical Sciences, 9 (3), 855, 2017.
- [5] Herrero, D.A., *Integral Equations and Operator Theory*, 1, 57, 1978.
- [6] Panayappan, S., Senthilkumar, D., Acta Ciencia Indica, XXVIII(4), 611, 2002.
- [7] Han, J.K., Lee, H.Y., Lee, W.Y., *Proceedings of the American Mathematical Society*, **128**, 119, 1999.
- [8] Rosenblum, M., *Proceedings of the American Mathematical Society*, **20**, 115, 1969.
- [9] Schweinsberg, A.R., *Pacific Journal of Mathematics*, **102** (2), 447, 1982.
- [10] Aiena, P., Fredholm and Local Spectral Theory with Applications to Multipliers, Kluwer Academic Publishers, New York, 2004.
- [11] Nasli Bakir, A., Mecheri, S., Georgian Mathematical Journal, 16(3), 427, 2009.
- [12] Nasli Bakir, A., Advances in the Theory of Nonlinear Analysis and its Applications, 4(4), 402, 2020.
- [13] Caradus, S.R., *Pacific Journal of Mathematics*, **18**(3), 437, 1966.
- [14] Finch, J.K., Pacific Journal of Mathematics, 58(1), 61, 1975.