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Abstract. In this article, we introduce adaptive estimators for parameters of the
(GPD) Generalized Pareto Distribution under censored data via the KIB-estimator. The KIB-
estimator is based on the Maximum Likelihood Estimates (MLE) by the exceedances over the
threshold t under random censoring which was developed by [1]. Hence, it was proved that
the KIB-estimator is Maximum Likelihood (ML) estimator with the uncensored case. We use
the standardized MLE based on the exceedances on the uncensored situation which converge
to a centered bivariate normal distribution. Whose found by [2] to standardized our adaptive
KIB estimator of the GPD parameters under random censorship. As an application, we
establish the asymptotic normality of an estimator of the excess-of- loss reinsurance premium
for heavy-tailed distribution, through the adapted KIB estimator of GPD under censored
data.

Keywords: extreme value index; random censoring; generalized Pareto distributions;
KIB estimator; reinsurance premium.

1. INTRODUCTION

x . be a sequence of independent and identically distribution (i.i.d). random

variables from some unknown distribution function( d.f) F. Denote the upper endpoint of F
by . where ;_ = sup {x ;F(x)<1}gooand with1_|:(t)>o, t<rp and x >0, be the conditional d.f.

of x -t given x -t,

F(x+t)—F(t)

Fe(X)=P(X <t+x|X >t)= T F @ 1)

We denote the order statistics by X, <X, <---<X, .. The weak convergence of the
centered and standardized maxima X ., implies the existence of sequences of constants

a,>0,b, >0 andad.f @ (x)such that:

Xnn —bn sx]:d)(x) (2)
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for all x>0 where 4, (x ) is continuous. The work of Fisher & Tippett [3], Gnedenko [4]and

de Haan [5] answered the question on the possible limits and characterized the classes of
distribution functions F having a certain limit in (2). This convergence result is our main
assumption. Up to location and scale, the possible limiting dfs ¢4 in (2) are given by the so-

called extreme value distributions W, (x) defined by

exp(—(1+ 7 X )71/71 ) if 5,20

_ 3)
exp(—exp(—x)), if =0

v, (x)=

Then it is well known Balkema et al. [6] and Pickands [7] that up to scale and location
transformations the generalized Pareto d.f. given by

with x >0 if , >0 and 0 <x <-1/4, if 5, <o,andfor ,, —oread o, (x)as
(pyl(x)zl—exp(—x)

More precisely, it has been proved that there exists a normalizing function ¢, (t)>0
such that for all x

tﬂ)rpF O<xs<utp—rF ‘Ft (X) - (071 (X ! 21 (t))‘ =0 (4)

if and only if ¢ eD(¥,): Recall that in this paper, we consider the estimation (;, o,)under
random censoring based on the maximum likelihood estimation . To specify it, let x
I.i.d random variables with the common distribution F . And y ...y be iid random

variables with the common distribution ¢ . We assume that both of F and G are absolutely
continuous:Definedz ...,z be n i.i.d random variables with the common distribution H of

z, =min(x,Y,) wWhere s —1 if x <v,.and s =o0.if x, >v,.We will assume that both F and G are

the domain of attraction of an extreme value distribution. The extreme value index of d.f. of
(z,s) exists and is denoted y where 5 -5, /(5,+5,) for ,, is the extreme value index d.f. of

X and ,, is the extreme value index d.f. of Y .For._, -, and ,, denote the right endpoint of
the support ofF , G andn respectively, we assume that the pair (r,g)is in one of the
following three cases (we get case 1 and case 2 for , .o and for case 3 for , o ):

case 1:7/1>0,;/2 >0,
case 2:7/1<0,7/2<O,2'F=TG
case 3:yl=y2:0,rF=rG:oo

and the other possibilities are not very interesting.
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o The Adapt of The Profile Log-Likelihood of GPD Under Random Censorship

We denoting the number of absolute excesses over t by «for rather the largest
observations (z ., ....z,,). In view of (4) withz —sup{x :H (x)<1} <ecdenote the right endpoint
of the support of Hwe can expect that observations of ¢ -z
equivalently, on

z, ., for 1<i<k, or,

n-i+ln

CO:Z C =Z

n-k,n’ 1 4

n—k+1,n ~ n—k,n""’Ck =Zn,n _Zn—k,n (5)

where in the asymptotic setting i -k an intermediate sequence, that is, x - »and ;5,085 n—w
. And let Spv
statistics of ¢, for i =1,...k .

Hence, in view of convergence (4), the conditional distribution of the ¢ c,....c,)given
Cc, =c,can be approximated by the distribution of an ordered sample of k i.i.d. generalized
Pareto random variables with d.f. X >p, (x/0)" This suggests to estimate the unknown

5, , the scorresponding to c,, ,....c, , respectively, for c, <...<c,, the order

parameters , and 5 by a maximum likelihood estimator in the approximating generalized
Pareto model under censored data; that is, given the sample (z, ..z jdenoting the number of
absolute excesses over t by kfor rather the largest observations (z ., ...,z ywe can easily
adapt the likelihood see Andersen et al.[1], to maximize:

f(Ci,t<’5i,|<):ilillfe.lv(Ci,|<)5i’k (1_FGP(Ci,k)) H (6)

where 1-F_ (x):=(1+(n/0)x )" fOr 20 and 1-F_ (x)=exp(-(x/q,)) fOr ,=0. The log-
likelihood of (6) is given for ,, 0 and , —o respectively by:

K[ . 1 . 1 "1

el Cuind)- i§l£5iklog[l]lcikJ "
klos| o |-G

The likelihood equations from (7) are then given in terms of the partial derivatives

odlog|¢|C. .5 Kk ? )
( ( ik I,k)) =3 {1J Iog{l+}ﬁ-cikJ[5ik+lJ{lci kJ{lerlCik} =0,
ayl = 71 Gl s y }/1 O'l ’ O-l ’

;/1¢O
alog(€<cik’5ik)) k 1 1)(n " h
F— =2 —| =G H Gt || =Gk || 1 Cik =0, (8)
1 i=log| © RS AN R o v
y1¢0
|og(£(cik,5ik))
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With third formula on (8), we find that
6. =(k /r)c Where . :i@,k and CTz(l/k)xiCLk (8.1)

The resulting likelihood equations in terms of ¢, for , »ocan be simplified as
follows:

1Kk 7.
ri§1|09[1+aici,k]:71 (8.2)
and
Kk V- -1
1 1 _
ki§1(715i,k +1)[1+o-10i,kj -1 (8.3)

Denote ¢ -—(;,/0,)and consider (g,,,) to be new parameters of the generalized Pareto
distribution. Then we can be easily adapt the likelihood for the sample (c,,....c, ) under (5),
and formula (7) with , oby

log (C(Ci,k ik )) = él{_éi,k log [—gﬂ{ﬁk +y11} log(1-6,C; )J 9)

which depend only on ¢, this is called the profile log-likelihood of 4. The value of 4 which
corresponds to the local maximum of this profile log-likelihood, given by

e (Ciedin))- él[‘ KOk {'“{‘ L (1“91‘3i,k)]}(5i,k o0 (1“91‘3i,k))} (10)

1 1=

.....

Consider the first derivative of the profile log-likelihood given in (10) by:

R B S 0C oC, «
CHCIILTS) ERCI 210(1=0C )~ 25" pc 1,
06, 6,<

ilog (1-6C:\)

Kk oi=1

> log (1-6C, , )

i=1

Solving L(6,(C.y.8,,))1 96, =0 is equivalent to finding the zeros of the function

1k 1r 1) 1k -1
y/(el):(riéllog(l—elci’k)][kigl(l—ﬁlci’r) j+ki§1(l_elci,k) 1 (11)
With g -—(;,/5,) Where 1_gc,, >0 for all i=1.. k, so must be computed numerically on the
space p—{g <1/c,,,6,+0} - The numerical problem to find a solution of the equation (11) which

maximizes the approximate likelihood was discussed in detail by Kouider et al. [1]. Hence, to
obtain a finite maximum of the GPD log-likelihood, the constraint , >_imust be imposed.

Moreover, we look for a maximum of the approximate likelihood function only in the region
]-1/ 2;+0[ x [0; +oc DECAUSE the maximum likelihood estimator behaves irregularly if , <(-1/2)-
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Since with uncensored when k =r we estimate the GPD parameters (;,s) Withy-_(,/5)

was discussed in detail by Kouider [9]. There More, Kouideret al. [1] was propose a new
index estimator for the shape parameters to estimate the extreme value index under censored
data by numerical algorithm for solve the function (11) and was developed that estimator is
not adaptive estimators note by ( (cx8) Ul(c,m)) with g¢*®. It was called the KIB estimator.

Hence in here numerical application proves that if gexe -4e the KIB estimator became

adaptive. Then, will be the censored ML estimator and the GPD parameters estimation under
censored data become the adaptive estimators. The adapted KIB estimator of GPD parameters
in censoring defined by multiplying »<'*®) and s® estimators not adapted to censoring of »

and o into & |

KIB (KIB _
(K18 , and &[C'K'B] :U( ) where p—r with n (12)
p l p k r :iglé‘hnlzl n>t

with p is the proportion of non-censored observation in the « largest z's ,with ¢ ,....5,,
being the s's corresponding to z, ...,z , respectively. For z, <..<z  are the order statistics
ofz, forj —1...n. And we note that y** and s*® are the same ML estimators.

It's easy that if ge«e) -4 we get the adaptive estimators of the GPD parameters with
KIB estimator by the Likelihood methodi.e,

o _ _ e
,\(KlB) ﬂ O,\_}_C,KlB] 1
B

The KIB estimator for the GPD parameters under censored data, can be approximate
in the following procedure:
e Find the root g¢<® of y (6,)=0where:

K 1) 1k
W(el)—(ilg Iog[l elclk]]{lél(l 91C|r) }Ligl(l elclk) —1-0
e Compute 7,°® by

1k (1 peKIBI )
rig 09t a ik | =71

. él(c.Kls) :_[?l[c.KIB) /6_1(C_KIBJJ then &1(C.KIB] :_{?1[C.KIB] /él(c.mB]J_

Let us now consider the estimation of an extreme quantile x_ _f-@1-s) where
s =1-Fyp (xr.) under censoring, we can adapt the classical estimators proposed in the literature
as follows:

ISSN: 1844 — 9581 Mathematics Section



400 Adaptive estimators of ... Kouider Mohammed Ridha et al.

(cKIB]

- NG| . KIB
(oKiB) [CKIB][(l Fn[zn_k’njj/sj ~twhere (CKIB)_GKIB _ [cKIB] o
Xt,k - Zn—k,n+a [CKIB] P L
n

Here under random censoring , the empirical estimator of the probability 1-F (1) is
necessarily given by the Kaplan and Meier [10] product-limit estimator defined as

S
i,n Zln— }

1-— ﬁn(x)iﬁlll n—i-+1 (14)

where z, - denote the order statistics associated to z,,...,

In the next part, we present the main result of this work, which is related to the
presentation the approximate normality of the adapted KIB estimator of the GPD under
censored data. Moreover, we give also the approximate normality of the KIB estimator of the
GPD without censored data. These results are based mainly on the findings of each Drees et
al. [2] and de Haan and Ferreira [11]. So we adapted their results under censored data. In
section (3) is intended for the application of the main result where we derive the approximate
normality of the estimator of reinsurance premiums in excess of the loss with censored data.

z, and ; thescorresponding toz, .

2. MAIN RESULTS

To specify the asymptotic bias of the adaptive KIB-estimator, we use a second-order
condition phrased in terms of function H*denotes the generalized inverse ofH. We note .
convergence in distribution and . convergence in probability. From the theory of generalized
regular variation of second-order outlinedin Drees et al. [2]. We assume that there exist
measurable, locally bounded functions, a positive function aand a second eventually positive
function a A E such that the limit

tll_r)noA%){H<_(1 )= H < (1=t)—a(t) X }z‘P(x) (15)

exist for some ,>_(1/2) , for all t<[o;] and x>0 with at)-0 as t—»o0. Moreover, according to
de Haan and Ferreira [11], there exist function 5 positive and A, (1) positive or negative
function, such that

lim {H‘_(l tx)— H‘_(l—tx)—ao(t)x_y_l}:‘i’(x) (16)
t—0 Ay (1) /4
where
g ()= a(t)ﬁl— L A(t)Jl/KO +[1 L A(t)]lp_o L+ 0—7}
with
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and

AL, o+ AL

where Anot changing sign eventually with |imA(t):oThen, according to de Haan and

Stadtmdiller [12], for some p<0, |a|is regularly varying with index -, for, that is,

. CA(tx)
i, A S g

It follows that there exists a czoand a second-order parameter p<ofor which the
function asatisfies

1 [atx) ] —yxP-1
My a0 7o

For an appropriate choice of the function a, the function ¥ that appears in (15) and
(16) admits the representation
_ A

7 ()= @F (x) With & :[%1p<0 +1p20) = AD

wherex —>LP(x)/(x’7“ -1), IS not constant . Then, according to de Haan and Ferreira [11], for all

x >0we have,
[X_(p+7/)—1j/(p+y), <0
W (x)={-x "log(x)/y, y#p=0
log2 (x), y=p=0

provided that the normalizing function aand the function A are chosen suitably.

This leads to the following Proposition, the proof of which is rather straightforward.
For the KIB estimator (the uncensored ML estimator), the asymptotic bias-term follows easily
from direct computations, it follows from the expressions for the asymptotic bias terms (de
Haan and Ferreira [11]) of the corresponding “uncensored” estimators, see Drees et al. [2].
We assume throughout that k =k_is an integer sequence satisfying,1<k <n,k - and

k/n—=0asn-w.

Proposition 2.1. Assume conditions (16) for some, > _(1/z)and that the intermediate sequence
k =k, satisfiesA(k ,n):O(Jk—)and if

VK Jim A(%) s sek With [%1p<0 +1p=0] —a (17)
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For uncensored case (k=r) the system of likelihood equations(8.2)-(8.3) has a
sequence of solutions ( > 5 that verifies

JE(;?K'B —y)—ﬂ&%i[ty —(27/+1)t27/)‘~}’(t)dt

i%[ﬁ/ —(2r +1)t27/j(w (1) —t—7 (t)jdt

and

%

[:(-L(/F:)—lj—(/ld(y;l)i[(y+l)(2}’+l)t27 —tyj‘P(t)dtMFJ

47 ((7+1)(2y+1) 27 _ tyj(W(l)—t_y_]W(t)jdt

7Y 0
where w is a standard Brownian motion.

Corollary 2.1.Assume condition of proposition(2.1).We have

SKIB _
v e d

Jk| sKIB —>N (2, %)
a(k/n)

where N denotes the bivariate normal distribution, uequals

(7+1) —p ' if p<0
A=p)(r—p+1) (1-p) (¥ —p+1)
L= [lOJT if p=0=y
r2a]" if p=0=y

and
@+7)%  —(1+7)

S =
—(1+y) ()41

Since, if 1=0 we was shown that the standardized KIB’s based on the exceedances
z,-tconverge to a centered bivariate normal distribution with covariance matrix Y. with no

asymptotic bias, , —[o,0] . Drees et al. [2] were setting one has to condition at the event

Z,., =t with
~KIB

O
\/E[a(k/n)_lj a(k/n)Tn +*/_(a(k/n) 1J
where T, is a normal random variable with variance ,.,), so that the first term tends to a

normal random variable with variance 5, ,) and unconditionally the second term converges to
y-w (yywith variance »?*, leading to the variance given in corollary (2.1).
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Moreover for , -0 ,p<0and z=osetting considered here, a(k/n)=yZ,.,, for , -0 and
a(k/”)zw(zn.n‘zn—k,n) for y <0 with ola(k /n)—>1 in probability, so that the first term tends to

a normal random variable with variancez(1+y) (i.e sxe (1T /Jk_))' Then the standardized
JK (7® ~7.6"® /a(k /n)-1)CONVerge to a centered bivariate normal distributionwith covariance
matrix

[(1+ 7/)2 —(1+ y)}

—(A+y) 2@+y)

which is Smith’s results [13-14] examined a slightly different version of the maximum
likelihood estimator that is based on the excesses over a deterministicthresholdz ¢t .
Now, let define
dAt(2)

() ="4H(2)

where H(z)=F(z)G(z) and whose introduced by Einmahl et al. [15], they

Fl(2)=-[G(x¥F (x)
noted that,z"m p(z)=2:=pe[01] for y =R Then, with -k is an integer sequence

n

satisfying ,1<k <n,k > and k /n—»0 as n —»«wWe have:

Theorem 1. Under the assumptions corollary (2.1) and for n -

Jlfél[p(u"' [LHB_ p} sk
and
Jk sup S‘p(UH (t))—p(UH(s))‘—>
&1—k/nst<1;‘t—s‘sc/\/E/n;s<1

0 forall C >0 (18)

we have, for the adaptive KIB-estimator of the GPD parameters under censoring, that
n>(-1/2)

KIB d p)
‘/E{ﬁ(c ]_7’1J_’N [t(’”“‘ll_ylal)';[%l“’f (1= p)D
where 1, denotes the bias and X, denotes the variance of Jk_(;?(K'B), y) , and
. (C.KIB)

lop 11d a (1-p)
k|l L — = SN[ A, -1,
vk A% (k/n) P - {“12 271117 3
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where A4, denotes the bias and X,, denotes the variance of Jk—((}K'B la(k /n)—1) and
a®(k/n)=a(k /n)/p.

Proof 2.1: Proof of Theorem (1), it is clear that for ,, =, /pand &, =/ p we have the following
decomposition

_(cKIB

)l

=)

Next for o /a(k /n)—1based on the sample; _, _, fori<i<kand with (13) we get

(€)
a(k/n)P1
a(k/n) _)E (20)
as similar with ;5 ,n)_iiwe have,
. (c.KIB) (KIB)
o 1 G 1.
k|4 2 =P k|S _ _1|-VKk=(p-
fa(c)(k/n) : pf[a(k/n) prp(p P) (21)

where k denote the (random) number of exceedances over the threshold tand p-(r/k)lt is

worth mentioning that pis a consistent estimator for p, that is p — p (in probability) as n — .
Then the terms (19) and (21) becomes

.[c,KIB [c,KIB 714
\/E{Vl( J_le:%\/g(y( J—yj—ﬁg(p—p)
(22)
&1(C’KIB] . 6_(K|Bj .
G e W[wl}ﬁ p2P7P)
Under Einmahl et al. [15], we have
Jk(p—p)=k(p-p)+Vk(p-B) (23)

They get that for u, U,
assumptions that

u,,are i.i.d. and independent of the Z -sample with the

00 e S]]

where U, (i /n)=H < (1—(i /n)) thenfor n —oo, we have
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Vk(p—p)=vk(P-p)+ay—0p(1) (25)
which 4, turns out to be a bias term. Since 5 =:21ui,k<p , We have
~ d
Vk(Pp-p)—>N(0;p(1-p))
Finally, combining (22) and (23) with (25) yields

\/E{?l[C’KIB)—le=1 \/E[;?(C’KIB]—y]—\/EJ/l(f’_p)}_ylalﬂjp(l)

p p
&l[C,KlBj . &(KIB) . o

with the two terms within the brackets independent since the first is based on the z-sample
and the second on the U -sample. Therefore, under the assumptions (17) and (18), we get

x/F{?l[C'KIBJ —71]—9'\‘ [é(’%l‘ﬁ%);;{zlplwlz (1~ p)D’

where ,,,, denotes the bias and =, denotes the variance of /i (7"*), ). And

. [CKIB)

o 1| d a (1-p)
k|1 = | SN[ Ay, — L5+
*/_a(C)(k/n) ol [“12 02 1173

With
c 5, &K!1B) 5(KIB)
ol (A o By o] ) sy
+%Var(\/f( p— p))

The following corollary, represent the expressions for the asymptotic bias terms of the
corresponding adaptive KIB —estimator.

Corollary 2.2. Under the assumptions of Theorem (1), we have

[ (c.KIB)
"1 - g
JK| [eKIB) —>N(Zy<°),z(°>j
11
_a(c)(k/n) p_
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406 Adaptive estimators of ... Kouider Mohammed Ridha et al.

where N denotes the bivariate normal distribution, 1) equals

-
. 1) o - - o | .
3 (r+ Az P L1t p<o
((1—/0)(7—/”1)] p N @-P)r-p+D)) p2 g
- y o T
2= 21— F}al,—p%} if p=0=y
- o T
Zl—al,pﬂ—%} if p=0=y
p

2 q1_
]F;[(l+7/1) +1pp] %(yl(l—Zp)—l)

(r,(1—2p)-1) (1+ py1)2+%

ok

Since if Z=owe get that the standardized adaptive KIB’s K (765 = 5,) and

71

\/—( &, "®) 1) based on the exceedances ;. for ; _under censoring converge to
a®(k/n) p ‘

bivariate normal distribution with covariance matrix Y© with asymptotic bias,

e :[_(7,1, p)“r‘(ll pz)oﬂT . There more, we setting

- (c.KIB)
1 1| o o 1 N
W{mp}‘awmm*ﬁ(wmqﬁpz(p 2

So that Tnm,(a(k,n))tends to a normal random variable with variance 2(1+)
unconditionally o/(a(k ,n))_>1and the second term converges to , (1ywith variance ,2and
third term converges to y (! p%(1-p)/p?)- Since asymptotically z , -tand the excesses
Z,.un-Z, ., Tor ici<kare independent, so are T, and ,y 1)and the third term based on the U-
sample so the asymptotic variance for the scale estimator under censoring is (1+5)* +(1/p)-
Since if

n-k,n

_(c,KIB
5(eK18)

°1 1. o + _klip_
a®(k/n)y P | a(k/n) " \/—pz(IO )

the asymptotic variance for the scale estimator under censoring is 2(1+»)+(1—p)/ p®

3. RESULTS AND APPLICATION

Our work will be of great interest in establishing the limit distributions of many
statistics in extreme value theory under random censoring such as the estimators of tail
indices and actuarial risk premiums for heavy-tailed distribution. As an application, we
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propose an estimator for the excess-of-loss reinsurance premium and establish its asymptotic
normality.
..... X, (n =1)be nindividual claim amounts of an insured heavy-tailed lossX

with finite mean. Note that a Pareto-like distribution, with tail index greater than or equal to 1,
do not have finite mean. Hence, assuming thate [x ]exists necessarily implies that ,, el]-zafIn

practice, each claim will have a policy limity equal to the maximal amount(specific to each
contract) that the company can insure. When the amount of the claim exceeds the policy limit
(i.e when x >Y ), the loss variable is right censored. for a discussion on this issue.

,,,,, x , be nindependent copies (n >1) of a non-negative random variable (rv) x

defined over some probability space (q;a;p), With cumulative distribution function (cdf) F .
We assume that the distribution tail F-1-ris regularly varying at infinity, with index,,,),
notation: ¢ RV ()" That is

F(tx) .

' _ VY forany x>0
LU F (1) =X (26)

We notice that the asymptotic normality of extreme value theory based estimators is
achieved in the second-order framework (see de Haan and Stadtmdaller [12]). Thus, it seems
quite natural to suppose that cdf’s F, G and H satisfy the well-known second-order condition
of regular variation. That is, we assume that there exist a constant 7, <ogand a function A

j =1,2,3tending to zero and not changing sign near infinity, such that for any x >0

_ =Y
EmO)IEM)—x Ty Al
lim = X AT
t—o A:L(t) Zv<)
o =Y /
i SOOIGM-x T2 Uy, X272 27)
t—>c0 A, (1) ' (YO
o _ /
i A/ HO—x Y7 gy, x373 1
m = X s =
t—>o0 Ag(t) 7373

X, be nindependent copies (n >1)of a non-negative random variable (rv) X
defined over some probability space (o;a;p), for distributed risks with cumulative
distribution function (cdf) F such as

F(x)= ox 1N (1+x7¥L(x))asx —> (28)

for 5, ¢[0;1], «>0a constant ¢ and L(x)a function with slow variation. We note that FeRV,,

it’s mean the same distribution with (26), (see de Haan and Ferreira [11] and de Haan and
Stadtmdller [12]).
Let F(x)=P(X <x+t|X >t)be the distribution of excesses over the threshold t. It

follows with similar from(1) that

—ELX_H)=(1+5j_1/]/11+(x+t)_a L(x+t)1 (29)

1+t~ <L(t)

ISSN: 1844 — 9581 Mathematics Section



408 Adaptive estimators of ... Kouider Mohammed Ridha et al.

Under the convergence (4), the law of excesses beyond of a threshold t is
asymptotically a law of GPD. Where the function of distribution GPD is:

1—[1—0—7/1 X

]_1/71 |
1

if =0

(30)

Fep (X)=
X 1 J—
1—exp[—o_1j if = (o]

with x e[0;7 —t] IS 7,50 , x e[O;min(—crllyl;z-F —t)]and if 5 <0. And if , 0, F, (x)iS
approximated by the exponential distribution with &, corresponds to the mean.
For the large value of t if 5,(t)=tythe function F,(x)is perturbed generalized Pareto

distribution (GPD), where is defines in (30). For large value of t (i.e. close to the right
endpoint of the support of F; .. =sup{x :F (x) <1}, USe that

Ft(x)~FGP(x) if o (t) =ty (31)

In the excess-of-loss reinsurance treaty, the ceding company covers claims that do not
exceed a (high) number t >0, called retention level, while the reinsurer pays the part
(X, -t), =max(0;x, —t)Of each claim exceeding t. the net premium for the layer from t to

infinity is defined as follow:
I1(t) = E[(X —t)+]=°ff(x)dx’ (32)

By definition F(x)=P(X >x-t) and with decaled with (1) and that F(x)=Fu(x)F(t) -
We can deduce

o0

[1(t)= { Ft(x).F(t)dx

Therefore, the estimator of the net premium will be written:

~ (e o)

o= I/:\t(x).%(t)dx

A natural estimator of é(t) is given according to the empirirque distribution which he

is the estimator of Kaplan-Meier [10] or other studies [16-18], given by (33). Note that the
distribution tail estimator is of the form

n—i+1

2 _ n 5i,nlzi n=t |,
F(t):= Fn(t)zi];[l 1—— |, (33)

In the other dimensioned, the theorem of Pickands [7], watch which the tail of
excesses is approximated by the GPD

N\

%t (X)=FGP (%)
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We can write this estimator under censored data in the form

(c,KIB
(c.KIB) —Vn )
~ — oo V.
1

Under the condition that <= <[o.1the estimator of the net premium under random
censoring can determine by

[C KIB]

I1(t)= Fn(t)% (34)
1—7/1

And we can transformed that for s« (t)=t pexe)this estimator (34) by

?:E-C,KIB) B ’
TKIB]tFn(t) (35)

l—;/l

[1(t)=

Theorem 2. Assume that all corollary (2.2) hold. Then, for o<y, <1 , H(t)=F(t )é(t)and

ﬁl(s);z_ffg(t)df(t)we have as n -,

JE(Fi(Et)(t—)H(t))E)N(ﬂ(C),Gz), (36)

where ., is given in corollary (2.2) and

2 20 dF(s) 1 1[1 2 1—p] |
{l 71] { S)G(S)+(1—7/1)2 p (+7/l) * p

Corollary 3.1. Under the assumptions (27), with no common discontinuity, we have

1
—( Fn(t) d 11 Pr
k[pm 1J N[O’E—zt 1}

where N denotes the bivariate normal distribution. Then (36) became

\/E(f[(t)—l_[(t))i

tF (1) N[’U(C)’Jz)

where ., is given in corollary (2.2) and
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ol Ht%(lla)z (e +1ppm

Proof of corollary 3.1. First, we provide the estimator of the net premium given in (34).
Consider the transformation

h =1+ﬁx
“1
thus we find that x =(h-1)(o,/5,)and dx =dh (o, /5,) therefor x -0 implies h —1 . The tail index
is (1/y,) and the case where yle[o;l]is will be considered in this work. This is the range of

(1/,)Which is often of interest in financial applications, thus with possibly an infinite second
moment.

0 % -1z 5 o —1/7
[1(t)=Fn (t)j[uy}xJ ldx ~AEn t)[h g
0 91 " 1
G 1 [ —upal” - &
7;1Fn(t)_}+l{h L Fn(t)l_y;1
1
We consider the following decomposition
\/?(ﬁ(t)—n(t)) 2 Fn(t) 1 (c.KIB)
tF (1) =1—17f1 \/?[ F (1) _1]_ (1_7/1)2 */E[Vl _7’1}

Under the asymptotic normality of the estimator of Kaplan-Meier [10], we deduce that

tdH(s)-
- 37
bR (s) 57

t dF(s)
_172 —
OF"(s)G(s)

E d h
J?[ En(gct))_lJ_’N (o,aaZ)W o1 2 _

Then with the term (37) and corollary (2.2), we get

VK (TI()-TI(1)) d 1 V2 11 2 g
Fo ”(C)’[l—n] ylzaa2+(1—y1)2p[(l+7l) +pp]

Since FeRrv, » GeRV,
7.

) and H cRrv where H(t)=F(t)G (t)- It’s easy to
chekd that

z) (*1/7)

F (1) p 712

_ 1
\/F{F”(t)—1]ﬂ>|\| [o,iit pyl}

and so the corollary (3.1) it has been proven.
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4. CONCLUSIONS

In this paper, we examine the properties of the adaptive KIB estimator for the tail
behavior under random censorship. Whose we illustrate earlier as the same the adaptive ML
estimator of extreme value index under censored data. By studying the adaptive estimator of
the shape parameter and the scale parameter of the GPD . We also adapted the theoretical
results that he mentioned under censoring with asymptotic bias terms of the corresponding
adaptive KIB estimators of the shape and the scale parameters of the GPD under random
censoring.
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Appendix A:

The first derivative of the profile log-likelihood under censoring for ¢ is given by

2
1) 15 11& Cy
=1 =Nlog(1-6C, , )-==Y ik
HCudi)) g, [HJ 2000 2
891 _i:1 ik llilog(l—ac )
6 r = HK
L Ly 0Cu
.  2100(1-6C14 )= 2y~ L ac,,
2|8 vo L
B 1k k ik
i1 Zlog(l 91C|k) 0,1-0C, ,
i=1
_k _ _k elci,k
By glog(l 0Ci.) .Z;‘l—@lci,k oc..
o % k "o ge
ti > log(1-6C; ) ik
i=1
. £ 6C; 6C
_152 ) —élog(l—ﬁlCi,k) ;1 oc,, 1 9C.k.1log(1 6C;,)
5 ik
4= Zlog(l—elciyk)
i=1
Sloa(lge Vv i 6C
L5l 200(0Cu) "2 g, 1 ec.kglog(l oC.)
5 ik
= ilog(l—@lci’k)
i=1
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