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Abstract. In this article, we introduce adaptive estimators for parameters of the 

(GPD) Generalized Pareto Distribution under censored data via the KIB-estimator. The KIB-

estimator is based on the Maximum Likelihood Estimates (MLE) by the exceedances over the 

threshold t under random censoring which was developed by [1]. Hence, it was proved that 

the KIB-estimator is Maximum Likelihood (ML) estimator with the uncensored case. We use 

the standardized MLE based on the exceedances on the uncensored situation which converge 

to a centered bivariate normal distribution. Whose found by [2] to standardized our adaptive 

KIB estimator of the GPD parameters under random censorship. As an application, we 

establish the asymptotic normality of an estimator of the excess-of- loss reinsurance premium 

for heavy-tailed distribution, through the adapted KIB estimator of GPD under censored 

data. 

Keywords: extreme value index; random censoring; generalized Pareto distributions; 

KIB estimator; reinsurance premium. 

 

 

1. INTRODUCTION  

 

 

Let 
1, , nX X be a sequence of independent and identically distribution (i.i.d). random 

variables from some unknown distribution function( d.f) F . Denote the upper endpoint of F 
by 

F where   sup : 1F x F x     and with  1 0F t  , t
F

 and 0x  , be the conditional d.f. 

of X t  given X t , 
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We denote the order statistics by 1: 2: :n n n nX X X   . The weak convergence of the 

centered and standardized maxima :n nX implies the existence of sequences of constants 

0na  , 0nb   and a d.f  x such that: 
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for all 0x   where  x  is continuous. The work of Fisher & Tippett [3], Gnedenko [4]and 

de Haan [5] answered the question on the possible limits and characterized the classes of 

distribution functions F  having a certain limit in (2). This convergence result is our main 

assumption. Up to location and scale, the possible limiting dfs  x  in (2) are given by the so-

called extreme value distributions  
1

x  , defined by 
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 (3)  

 

Then it is well known Balkema et al. [6] and Pickands  [7] that up to scale and location 

transformations the generalized Pareto d.f. given by 

 

   
1/

11 1 ,
11

x x


 


    

 

with 0x   if 
1 0   and 

10 1/x     if 
1 0  , and for 

1 0  read  
1

x  as  

 

   1 exp
1

x x     

 

More precisely, it has been proved that there exists a normalizing function  1 0t 

such that for all x  

 

    lim sup / 0,
110

F x x ttt x tF F

  
 

   

 
(4)  

 

if and only if  
1

F D   . Recall that in this paper, we consider the estimation  1 1,  under 

random censoring based on the maximum likelihood estimation . To specify it, let 
1, , nX X be 

i.i.d random variables with the common distribution F  . And 
1, , nY Y be i.i.d random 

variables with the common distribution G . We assume that both of F  and G are absolutely 

continuous:Defined
1, , nZ Z be n  i.i.d random variables with the common distribution H of 

 min ,i i iZ X Y  where 1i   if 
i iX Y . and 0i  .if 

i iX Y .We will assume that both F  and G  are 

the domain of attraction of an extreme value distribution. The extreme value index of d.f. of 

 ,Z   exists and is denoted   where  1 2 1 2/       for 
1  is the extreme value index d.f. of 

X  and 
2  is the extreme value index d.f. of Y .For

F  , 
G  and 

H denote the right endpoint of 

the support of F  , G  and H  respectively, we assume that the pair  ,F G is in one of the 

following three cases (we get case 1 and case 2 for 0   and for case 3 for 0   ): 

 

1: 0, 0,
1 2

2 : 0, 0,
1 2

3: 0,
1 2

case

case
F G

case
F G

 

   

   

  


  


    

 

 

and the other possibilities are not very interesting. 
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 The Adapt of The Profile Log-Likelihood of GPD Under Random Censorship 
 

We denoting the number of absolute excesses over t  by k for rather the largest 

observations  : :, ,n k n n nZ Z
. In view of (4) with   sup : 1H x H x    denote the right endpoint 

of the support of H we can expect that observations of 
1, ,i n i n n k nC Z Z    for 1 i k  , or, 

equivalently, on 

 
, , , ,0 1, 1, , ,

C Z C Z Z C Z Zn nn k n n k n n k n k n k n
    

    
 

(5)  

 

where in the asymptotic setting 
nk k an intermediate sequence, that is, 

nk and / 0nk n  as n 

. And let 
1, ,, ,k k k  the  corresponding to 

1, ,, ,k k kC C respectively, for 
1, ,k k kC C  the order 

statistics of 
iC  for 1, ,i k . 

Hence, in view of convergence (4), the conditional distribution of the  0 1, , , kC C C given 

0 0C c can be approximated by the distribution of an ordered sample of k i.i.d. generalized 

Pareto random variables with d.f.  
1 1/x x  . This suggests to estimate the unknown 

parameters 
1  and 

1 by a maximum likelihood estimator in the approximating generalized 

Pareto model under censored data; that is, given the sample  1, , nZ Z denoting the number of 

absolute excesses over t  by k for rather the largest observations  : :, ,n k n n nZ Z
we can easily 

adapt the likelihood see Andersen et al.[1], to maximize: 

 

      
1

,,
, 1 ,

, , , ,1

k i ki k
C f C F C

GP GPi k i k i k i ki





 


 (6)  

 

where      11/

1 11 : 1 /GPF x x


 


    for 
1 0   and     11 : exp /GPF x x     for 

1 0  . The log- 

likelihood of (6) is given for 
1 0   and 

1 0   respectively by: 

 

  

1 1 1log log 1
, , ,1 1 1 1

log ,
, ,

1 1
log

, ,1 1 1

k
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(7)  

 

The likelihood equations from (7) are then given in terms of the partial derivatives 
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With third formula on (8), we find that  

 

 1
ˆ /k r C   where 

,

1

k

i k

i

r 



 and 

  ,

1

1/
k

i k

i

C k C


 
 

(8.1)  

 

The resulting likelihood equations in terms of 
,i kC for 

1 0  can be simplified as 

follows: 

1 1log 1
1,1 1

k
C

i kr i






 
 
 
 

 


 
(8.2)  

and 
1

1 11 1 1
1 , ,1 1

k
C

i k i kk i


 



 
   

  
 



  


 (8.3)  

 

Denote  1 1 1/    and consider  1 1,   to be new parameters of the generalized Pareto 

distribution. Then we can be easily adapt the likelihood for the sample  1, , kC C  under (5), 

and formula (7) with 
1 0  by 

 

    11log , log log 1
1, , , , ,1 1 1

k
C C

i k i k i k i k i ki


   

 

    
         

         

 
(9)  

 

which depend only on 
1 , this is called the profile log-likelihood of 

1 . The value of 
1 which 

corresponds to the local maximum of this profile log-likelihood, given by 

 

       1 1
L , , log log 1 log 1

1 1 1, , , , , ,1 11

k kr
C C C

i k i k i k i k i k i kk ri i
     



   
          

       

 
(10)  

 

Consider the first derivative of the profile log-likelihood given in (10) by: 

 

      

 

1 , 1 ,

1 , 1 ,
1 , , 1 1 11 , 1 ,

,

11 1
1 ,

1

log 1 log 1
L , , 1 11

log 1

k k k
i k i k

i k i kk
i k i k i i ii k i k
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i
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Solving   1 , , 1L , , / 0i k i kC    is equivalent to finding the zeros of the function 

 

       
111 1 1

log 1 1 1 1,1 1 1 1, ,1 1 1

k r k
C C Ci ri k i kr k ki i i

    

  
              

 
(11)  

 

with  1 1 1/     where 
1 ,1 0i kC   for all 1, ,i k , so must be computed numerically on the 

space  1 , 11/ , 0k kC     . The numerical problem to find a solution of the equation (11) which 

maximizes the approximate likelihood was discussed in detail by Kouider et al. [1]. Hence, to 

obtain a finite maximum of the GPD log-likelihood, the constraint 
1 1   must be imposed. 

Moreover, we look for a maximum of the approximate likelihood function only in the region 

   1/ 2; 0;    because the maximum likelihood estimator behaves irregularly if  1 1/ 2   .  
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Since with uncensored when k r  we estimate the GPD parameters  ,   with  /   

was discussed in detail by Kouider [9]. There More, Kouideret al. [1] was propose a new 

index estimator for the shape parameters to estimate the extreme value index under censored 

data by numerical algorithm for solve the function (11) and was developed that estimator is 

not adaptive estimators note by     , ,

1 1
ˆ ˆ,

c KIB c KIB
   with  ,

1
ˆ c KIB
 . It was called the KIB estimator. 

Hence in here numerical application proves that if    ,

1
ˆ ˆc KIB KIB
   the KIB estimator became 

adaptive. Then, will be the censored ML estimator and the GPD parameters estimation under 

censored data become the adaptive estimators. The adapted KIB estimator of GPD parameters 

in censoring defined by multiplying  ˆ KIB
  and  ˆ

KIB
  estimators not adapted to censoring of   

and   into k
r

, 

 

. ˆ
ˆ
1 ˆ

KIB
c KIB

p




 
  
  

  
, and . ˆ

ˆ
1 ˆ

KIB
c KIB

p




 
  
  

    where ˆ
r

p
k

  with 
1

,
1 ,

n
r

i n Z ti i n
  

 (12)  

 

with p̂  is the proportion of non-censored observation in the k  largest 'Z s  ,with 
1, ,, ,n n n   

being the ' s corresponding to 
1, ,, ,n n nZ Z , respectively. For 

1, ,n n nZ Z   are the order statistics 

of
iZ for 1, ,i n . And we note that  ˆ KIB

  and  ˆ
KIB

  are the same ML estimators. 

It's easy that if    ,

1
ˆ ˆc KIB KIB
   we get the adaptive estimators of the GPD parameters with 

KIB estimator by the Likelihood methodi.e, 

 

ˆ ,
ˆ ,ˆ ˆ 1ˆ ˆ

1,
ˆ ˆ ˆ

1
ˆ

KIB
c KIBKIB

KIB c KIBp

KIB KIB c KIB

p




 

  

 
 
   

   
          

   

     
     
     

   

with ˆ
r

p
k

  

The KIB estimator for the GPD parameters under censored data, can be approximate 

in the following procedure: 

 Find the root  .

1
ˆ c KIB
 of  1 0   where: 

 

   
111 1 1

log 1 1 1 1 0
,1 1 1 1, ,1 1 1
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. .1 ˆ ˆlog 1
1 1:k1

c KIB c KIBk
C
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1 1 1

c KIB c KIB c KIB
  

     
     
     

 
 
 
 

 
 then . . .

ˆˆˆ /
1 1 1

c KIB c KIB c KIB
  

     
     
     

 
 
 
 

  . 

 

Let us now consider the estimation of an extreme quantile  , 1F sx F s   where

 ,1 GP F ss F x   under censoring, we can adapt the classical estimators proposed in the literature 

as follows: 
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1ˆ ˆ1 / 1
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Here under random censoring , the empirical estimator of the probability  1 F t  is 

necessarily given by the Kaplan and Meier [10] product-limit estimator defined as 

 

 

1
,

,ˆ1 1
11

i n Z xn i n
F xn n ii

 
 
 
 
 


  

 

 
(14)  

 

where 
,i nZ  denote the order statistics associated to 

1, , nZ Z  and 
,i n the corresponding to

,i nZ . 

In the next part, we present the main result of this work, which is related to the 

presentation the approximate normality of the adapted KIB estimator of the GPD under 

censored data. Moreover, we give also the approximate normality of the KIB estimator of the 

GPD without censored data. These results are based mainly on the findings of each Drees et 

al. [2] and de Haan and Ferreira [11]. So we adapted their results under censored data. In 

section (3) is intended for the application of the main result where we derive the approximate 

normality of the estimator of reinsurance premiums in excess of the loss with censored data. 
 

 

2. MAIN RESULTS  

 

 

To specify the asymptotic bias of the adaptive KIB-estimator, we use a second-order 

condition phrased in terms of function H  denotes the generalized inverse of H . We note
d

  

convergence in distribution and 
P

 convergence in probability. From the theory of generalized 

regular variation of second-order outlinedin Drees et al. [2]. We assume that there exist 

measurable, locally bounded functions, a positive function a and a second eventually positive 

function    : 0;1 0;A   , such that the limit 

 

 
       

1 1
lim 1 1

0

x
H tx H t a t x

A tt





  
 
  


     


 (15)  

 

exist for some  1/ 2    , for all  0;1t   and 0x   with   0A t   as 0t  . Moreover, according to 

de Haan and Ferreira [11], there exist function 
0a  positive and  0A t  positive or negative 

function, such that 
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lim 1 1

00 0

x
H tx H tx a t x

A tt
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1 1 1 1 1
0 0 0 0
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A t A t A t
 

 
 

 

 

where A not changing sign eventually with  
0

lim 0
t

A t


 Then, according to de Haan and 

Stadtmüller [12], for some 0  , A is regularly varying with index   for , that is,  

 

 
 

lim
0

A tx
x

A tt





 

 

It follows that there exists a 0c  and a second-order parameter 0  for which the 

function a satisfies 

 
 
 

1 1
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A t a xt


 



  
 
  


 

 


 

 

For an appropriate choice of the function a , the function   that appears in (15) and 

(16) admits the representation  

   x x    with 
 

 
1 01 1 :

0 0

A t

A t


 

 
 
 

  
 

 

 

where    / 1x x x   , is not constant . Then, according to de Haan and Ferreira [11], for all 

0x  we have, 

 

 
 

 

 

1 / , 0

log / , 0

2log , 0

x
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provided that the normalizing function a and the function A are chosen suitably. 

This leads to the following Proposition, the proof of which is rather straightforward. 

For the KIB estimator (the uncensored ML estimator), the asymptotic bias-term follows easily 

from direct computations, it follows from the expressions for the asymptotic bias terms (de 

Haan and Ferreira [11]) of the corresponding “uncensored” estimators, see Drees et al. [2]. 

We assume throughout that 
nk k is an integer sequence satisfying,1 ,k n k    and 

/ 0k n   as n  . 

 

Proposition 2.1. Assume conditions (16) for some  1/ 2   and that the intermediate sequence

nk k satisfies    /A k n O k and if 

 

lim
k

k A
n n


 
 
 

 


 with 1
1 1 :

0 0


 

 
 
 

 
 

 
(17)  
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For uncensored case (k=r) the system of likelihood equations(8.2)-(8.3) has a 

sequence of solutions  ˆ ˆ,  that verifies 

 

   
   

 
     

2 11 2ˆ 2 1
0

2
1 2 1

2 1 1

KIBk t t t dt

d
t t W t W t dt
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11ˆ 2
1 1 2 1

/ 0

11 2 1
1 2 1 1

0

KIB
k t t t dt

a k n

d
t t W t W t dt

     


    


              

  
  
  


       

  
    

 

 

where W is a standard Brownian motion. 

 

Corollary 2.1.Assume condition of proposition(2.1).We have 

 

 

 
ˆ

,ˆ
1

/

KIB
d

KIBk N
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where N denotes the bivariate normal distribution,  equals  
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T
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1 1

2
1 1 1

 

 

 
 
 
 
 

  
 

   

 

 

Since, if 0   we was shown that the standardized KIB’s based on the exceedances 

iZ t converge to a centered bivariate normal distribution with covariance matrix   with no 

asymptotic bias,  0,0
T

  . Drees et al. [2] were setting one has to condition at the event 

,n k nZ t   with  

     
ˆ

1 1
/ / /

KIB
k T kna k n a k n a k n

     
   

  
  

   
 

 

where 
nT  is a normal random variable with variance  2 1  , so that the first term tends to a 

normal random variable with variance  2 1   and unconditionally the second term converges to 

 1W  with variance 2 , leading to the variance given in corollary (2.1). 
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Moreover for 0   , 0  and 0  setting considered here,   ,/ n k na k n Z   for 0   and

   / , ,
a k n Z Zn n n k n

 


 for 0   with  / / 1a k n   in probability, so that the first term tends to 

a normal random variable with variance  2 1   (i.e  ˆ ˆ 1 /KIB

nT k   ). Then the standardized 

  ˆ ˆ, / / 1KIB KIBk a k n    converge to a centered bivariate normal distributionwith covariance 

matrix  

   

   

2
1 1

1 2 1

 

 

 
 
 
 

  

  

 

 

which is Smith’s results [13-14] examined a slightly different version of the maximum 

likelihood estimator that is based on the excesses over a deterministicthreshold
,n k nZ t   . 

Now, let define 

 
 

 

1
d H z

p z
d H z


 

 

where      H z F z G z  and 
     

1
H

z

H z G x d F x



  
whose introduced by Einmahl et al. [15], they 

noted that,    
1

lim : 0;1
Hz

p z p





    for 1 2
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 . Then, with 

nk k is an integer sequence 

satisfying ,1 ,k n k    and / 0k n   as n we have: 

 

1
ˆ

,1

k r
p

i kk ki
 



 

 

Theorem 1. Under the assumptions corollary (2.1) and for n   
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 for all 0C            (18) 

 

we have, for the adaptive KIB-estimator of the GPD parameters under censoring, that 
 1 1/ 2    

   
, 1 1 211ˆ , 1

1 1 11 1 1 1
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11 denotes the bias and 11 denotes the variance of   ˆ ,
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where 12 denotes the bias and 22 denotes the variance of   ˆ / / 1KIBk a k n   and 

     / / /
c

a k n a k n p . 

 

Proof 2.1: Proof of Theorem (1), it is clear that for 
1 / p  and 

1 / p  we have the following 

decomposition  

 

, ˆ1
ˆ ˆ 1
1 1 ˆ ˆ

c KIB KIB p
k k k

p p p


   

   
   
   

     
             

      
(19)  

 

Next for  / / 1a k n  based on the sample
1, ,i n i n n k nC Z Z     for1 i k  and with (13) we get  
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/

c Pa k n
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  (20)  
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1
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p
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p
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where k denote the (random) number of exceedances over the threshold t and  ˆ /p r k It is 

worth mentioning that p̂ is a consistent estimator for p , that is p̂ p (in probability) as n  . 

Then the terms (19) and (21) becomes 
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Under Einmahl et al. [15], we have  

 

     ˆ ˆk p p k p p k p p      (23)  

 

They get that for 
1, 2, ,, , ,n n n nU U U are i.i.d. and independent of the Z -sample with the 

assumptions that 
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where     / 1 /HU i n H i n   then for n  , we have 
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     ˆ 1
1

k p p k p p op      (25)  

 

which 
1  turns out to be a bias term. Since 
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1
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Finally, combining (22) and (23) with (25) yields 
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with the two terms within the brackets independent since the first is based on the Z -sample 

and the second on the U -sample. Therefore, under the assumptions (17) and (18), we get 
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1 1 11 1 1 1
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where 
11 denotes the bias and 

11 denotes the variance of   ˆ ,
KIB

k   . And 
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ˆ 111 1 ;
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1 ˆ .
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Var k p p
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The following corollary, represent the expressions for the asymptotic bias terms of the 

corresponding adaptive KIB –estimator. 

 

Corollary 2.2. Under the assumptions of Theorem (1), we have 
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where N denotes the bivariate normal distribution,  c
 equals 

 

 
     

1 1 1, 0
1 21 1 1 1

1 1, 0
1 2

1 12 , 0
1 2

T
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p p

T
c

if
p p
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p


  . And  c
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21 1 1
1 1 2 1

1 1

21 1
1 2 1 1

1 1

p
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p p
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Since if 0  we get that the standardized adaptive KIB’s   ,

1 1
ˆ c KIB

k    and 

 

   

,

1
ˆ 1

/

c KIB

c
k

pa k n

 
 

 
 

 based on the exceedances 
iZ t  for 

,n k nZ t  under censoring converge to 

bivariate normal distribution with covariance matrix  c
 with asymptotic bias, 

     2/ , 1/
1 1 1

Tc
p p    

  
  

. There more, we setting  

 

       
 

,
ˆ 1 11 ˆ1

2/ //

c KIB

k T k k p pnc p a k n a k n pa k n

  

 
 
 

 
   
   

     
 

     

 

 

So that   / /nT a k n tends to a normal random variable with variance  2 1 

unconditionally   / / 1a k n  and the second term converges to  1W  with variance 2 and 

third term converges to   2 3

1 / ; 1 /N p p p  . Since asymptotically 
,n k nZ t  and the excesses 

1, ,n i n n k nZ Z    for 1 i k  are independent, so are 
nT  and  1W and the third term based on the U-

sample so the asymptotic variance for the scale estimator under censoring is    
2

1 1/ p  . 

Since if  

     
 

,
ˆ 1 11 ˆ

2//

c KIB

k T k p pnc p a k n pa k n

 

 
 
 

 
 
 
 
 
 

   
 

 

the asymptotic variance for the scale estimator under censoring is     32 1 1 /p p    

 

 

3. RESULTS AND APPLICATION 
 

 

Our work will be of great interest in establishing the limit distributions of many 

statistics in extreme value theory under random censoring such as the estimators of tail 

indices and actuarial risk premiums for heavy-tailed distribution. As an application, we 
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propose an estimator for the excess-of-loss reinsurance premium and establish its asymptotic 

normality. 

Let 
1, , nX X  1n  be n individual claim amounts of an insured heavy-tailed loss X

with finite mean. Note that a Pareto-like distribution, with tail index greater than or equal to 1, 

do not have finite mean. Hence, assuming that  E X exists necessarily implies that  1 1;1   In 

practice, each claim will have a policy limitY equal to the maximal amount(specific to each 

contract) that the company can insure. When the amount of the claim exceeds the policy limit 

(i.e when X Y ), the loss variable is right censored. for a discussion on this issue. 

Let 
1, , nX X be n independent copies  1n  of a non-negative random variable (rv) X

defined over some probability space  ; ;A P , with cumulative distribution function (cdf) F . 

We assume that the distribution tail 1F F  is regularly varying at infinity, with index  11/  , 

notation: 
 11/

F RV


 . That is 

 

 

 

1/
1lim :

F tx
x

t F t





, for any 0x   

(26)  

 

We notice that the asymptotic normality of extreme value theory based estimators is 

achieved in the second-order framework (see de Haan and Stadtmüller [12]). Thus, it seems 

quite natural to suppose that cdf’s F, G and H satisfy the well-known second-order condition 

of regular variation. That is, we assume that there exist a constant 0j  and a function 
jA , 

1,2,3j  tending to zero and not changing sign near infinity, such that for any 0x   

 

   
 

   
 

   
 

1/ /
1 1/ 1 1/ 11lim : ,

1 1 1
1/ /2 1/ 2 2/ 12lim : ,

2 2 2
/1/ 3 3/ 11/

lim : ,

3 3 3

F tx F t x x
x

t A t

G tx G t x x
x

t A t

H tx H t x x
x

t A t

  


 

  


 

 


 


 





 





 




 
(27)  

 

Let 
1, , nX X be n independent copies  1n  of a non-negative random variable (rv) X

defined over some probability space  ; ;A P , for distributed risks with cumulative 

distribution function (cdf) F such as 
 

    
1/

1: 1F x cx x L x as x
      (28)  

 

for  1 0;1  , 0  a constant c  and  L x a function with slow variation. We note that 
 11/

F RV




it’s mean the same distribution with (26), (see de Haan and Ferreira [11] and de Haan and 

Stadtmüller [12]). 

Let    : |tF x P X x t X t    be the distribution of excesses over the threshold t. It 

follows with similar from(1) that 
 

 
 

 

   

 

1/ 11
: 1

1

F x t x t L x tx
F xt

tF t t L t




 
 
 

   
   

, (29)  
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Under the convergence (4), the law of excesses beyond of a threshold t is 

asymptotically a law of GPD. Where the function of distribution GPD is: 
 

 

1/
1

11 1 0
1

1:

1 exp 0
1

1

x if

F x
GP

x
if











 
 
   


  
  
  

 



  



  

, 

(30)  

 

with  0; Fx t   is 
1 0   ,  1 10;min / ; Fx t      

and if 
1 0  . And if 

1 0  ,  GPF x is 

approximated by the exponential distribution with 
1 corresponds to the mean. 

For the large value of t if  1 1t t  the function  tF x is perturbed generalized Pareto 

distribution (GPD), where is defines in (30). For large value of t (i.e. close to the right 

endpoint of the support of F;   sup : 1F x F x   , use that 

 

   F x F xt GP  if  
1 1

t t  , (31)  

 

In the excess-of-loss reinsurance treaty, the ceding company covers claims that do not 

exceed a (high) number 0t  , called retention level, while the reinsurer pays the part 

   max 0;i iX t X t


   of each claim exceeding t. the net premium for the layer from t to 

infinity is defined as follow: 

 

     t E X t F x dx
t

 
 


    

, 
(32)  

 

By definition    F x P X x t    and with decaled with (1) and that      .tF x F x F t  . 

We can deduce  

     .t F x F t dxt
t


  

 

 

Therefore, the estimator of the net premium will be written: 

 

     
^ ^

ˆ .t F x F t dxt
t


  

 

 

A natural estimator of  
^

F t  is given according to the empirirque distribution which he 

is the estimator of Kaplan-Meier [10] or other studies [16-18], given by (33). Note that the 

distribution tail estimator is of the form 

 

   

1
,^

,
: 1 ,

11

i n Z tn i n
F t F tn

n ii

 
 
 
 
 


  

 

, 
(33)  

 

In the other dimensioned, the theorem of Pickands [7], watch which the tail of 

excesses is approximated by the GPD 

 

   
^ ^
F x F xt GP  
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We can write this estimator under censored data in the form 

 

   

,
ˆ1/
1,

ˆ
ˆ 11

,0 ˆ
1

c KIB

c KIB

t F t x dxn
c KIB







 
 
  
 

 
 
 

 
 
 

 
 
 
 
 
 




  

 

 

Under the condition that    ,

1̂ 0;1
c KIB

  the estimator of the net premium under random 

censoring can determine by 

 

   

,
ˆ

ˆ 1
,

ˆ1
1

c KIB

t F tn
c KIB





 
 
 

 
 
 

 



, 
(34)  

 

And we can transformed that for      , ,

1 1̂
ˆ c KIB c KIB

t t  this estimator (34) by 

 

   

,
ˆ

ˆ 1
,

ˆ1
1

c KIB

t tF tn
c KIB





 
 
 

 
 
 

 



, 
(35)  

 

Theorem 2. Assume that all corollary (2.2) hold. Then, for 
10 1   ,      :H t F t G t and 

     
1

:
H

s

H s G t d F t



  
we have as n  , 

 

    
 

 
ˆ

2,
k t t d c

N
tF t

  
 
 

 
 , (36)  

 

where  c  is given in corollary (2.2) and 
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0 21 1 1 12 2 1

1 12 21
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1

d F s p

p pt F s G s

  




 
    

    
        

 


   




. 

 

Corollary 3.1. Under the assumptions (27), with no common discontinuity, we have 

 

 

 

1
1 1 11 0,

2
1
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k N t
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where N denotes the bivariate normal distribution. Then (36) became 
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k t t d c

N
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where  c  is given in corollary (2.2) and 
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Proof of corollary 3.1. First, we provide the estimator of the net premium given in (34). 

Consider the transformation 

11

1

h x



 

 

 

thus we find that   1 11 /x h    and  1 1/dx dh   therefor 0x   implies 1h   . The tail index 

is  11/   and the case where  1 0;1  is will be considered in this work. This is the range of 

 11/  which is often of interest in financial applications, thus with possibly an infinite second 

moment. 

     

   

ˆ1/
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ˆ 1 1 11
ˆˆ0 11 1

ˆ ˆˆ1/ 111 11
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We consider the following decomposition 
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Under the asymptotic normality of the estimator of Kaplan-Meier [10], we deduce that 

 

 

 
 21 0,
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k N aF t


 
 
 
 

 
where  

   

 

 

1
2

2 20 0
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Then with the term (37) and corollary (2.2), we get 
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Since 
 11/

F RV


  , 
 21/

G RV


  and 
 1/

H RV


  where      :H t F t G t . It’s easy to 

chekd that  

 

 

 

1
1 1 11 0,

2
1

pdF tn
k N t

pF t





 
   
   
 

    
 

 
 

 

and so the corollary (3.1) it has been proven. 
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4. CONCLUSIONS 

 

 

In this paper, we examine the properties of the adaptive KIB estimator for the tail 

behavior under random censorship. Whose we illustrate earlier as the same the adaptive ML 

estimator of extreme value index under censored data. By studying the adaptive estimator of 

the shape parameter and the scale parameter of the GPD . We also adapted the theoretical 

results that he mentioned under censoring with asymptotic bias terms of the corresponding 

adaptive KIB estimators of the shape and the scale parameters of the GPD under random 

censoring. 
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Appendix A: 

 

The first derivative of the profile log-likelihood under censoring for ̂  is given by  
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