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Abstract. In this paper, we will discuss the weak stability of 𝜀-isometries on certain 

Banach spaces. Let 𝑓: 𝑋 →  𝑌 be a standard ε-isometry. If 𝑌∗ is strictly convex, then for any 

𝑥∗ ∈ 𝑋∗, there is 𝜑 ∈ 𝑌∗ that satisfies ‖𝜑‖  ≡ 𝑟 = ‖𝑥∗‖, such that 

 
|〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉| ≤ 2𝑟𝜀, 𝑥 ∈ 𝑋. 

 

Also, we show that if 𝑋 and 𝑌 are both 𝐿𝑃 spaces (1 < 𝑝 < ∞), 𝑓: 𝑋 → 𝑌 is a 

standard ε-isometry, then there exists a linear operator 𝑇: 𝑌 → 𝑋 with norm 1 such that 

 
‖𝑇𝑓(𝑥) − 𝑥‖ ≤ 2𝜀, ∀𝑥 ∈ 𝑋. 
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1. INTRODUCTION  

 

 

Often we cannot find an exact solution to a problem in the real world, even though we 

have made a mathematical model of the problem. There is always a difference between the 

ideal result and the real result of applying the mathematical model that is made. This problem 

gave rise to the term isometry as the ideal result and 𝜀-isometry as the real result. Thus, if 

distances are known imprecisely one may not be able to say whether a mapping is an 

isometry, then the concept of ε-isometry is useful. 

Isometry mapping should be performed on the metric space, and Banach space is one 

of the special metric spaces. On the other hand, since each metric space can be embedded in a 

Banach space while keeping the metric unchanged (see [1], Lemma 1.1]), the study of metric-

preserving mapping in Banach space does not lose generality. It is said that a mapping 𝑈 from 

Banach space 𝑋 into Banach space 𝑌 is a metric-preserved mapping (or called an isometry 

mapping) if, for all 𝑥, 𝑦 ∈  𝑋 satisfies 

 

‖𝑈(𝑥) − 𝑈(𝑦)‖ = ‖𝑥 − 𝑦‖, 
 

That is, the distance between any two points is preserved under this mapping. If 𝑈 also 

satisfies 𝑈(0) = 0, that is, the origin of 𝑋 is mapped to the origin of 𝑌, then it is said that 𝑈 is 

standard. For the sake of brevity, we choose isometry notion than metric-preserved mapping. 
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ε -isometry mapping is nothing but a mapping that has a difference of ε with the actual 

value, where the value of 𝜀 also applies to true isometry. Therefore, ε-isometry mapping is 

defined as 

 
‖𝑓(𝑥) − 𝑓(𝑦)‖ – ‖𝑥 − 𝑦‖ | ≤ 𝜀. 

 

By the above definition, we have four possibilities depending on the surjectivity of f 

and value of ε: (1) f is surjective and ε = 0 (that is f is surjective isometry); (2) f is non-

surjective and ε = 0; (3) f is surjective and ε ≠ 0; and (4) f is non-surjective and ε ≠ 0. By 

these possibilities, the research of isometry and perturbed isometry mapping can be roughly 

divided into the following stages: surjective and non-surjective isometry, surjective and non-

surjective ε-isometry, and coarse isometry.  

Mazur-Ulam shows that every isometry mapping is affine [2]. This means that 

isometry mapping is just translated linear mappings. This result raises a notion of 𝜀-isometry 

mappings. Hyers-Ulam [3] proposed a problem, “If f is a surjective 𝜀-isometry, then does 

always there exist an isometry mapping U such that the difference of f and U is bounded by 

k𝜀, for any positive number k?”. Many experts gave the affirmative answer.  

In the Hyers-Ulam problem, the surjective condition of 𝜀-isometry can not be 

dropped in the norm topology. Therefore, many mathematicians try to avoid the surjective 

condition via weak topology. 

In the case of surjective ε-isometries, we refer to [4-9]. In this paper, we will discuss 

the interesting topic for non-surjective ε-isometries. Preliminary results in this specific topic 

can be found in [10-21], and the important theorem that will be used continuously is as 

follows [12]. 

 

Theorem 1.1. Suppose f: X → Y is a standard ε-isometry, then ∀x∗ ∈ X∗, there is φ ∈ Y∗ that 

satisfies ‖φ‖ ≡ r = ‖x∗‖, such that 

 

 |〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉| ≤ 𝜅𝑟𝜀, ∀𝑥 ∈ 𝑋,  (1.1) 

where 𝜅 = 4. 

 

Recently, Cheng and Dong [11] further proved that the constant 𝜅 = 4 in the above 

theorem can be optimized to 𝜅 = 3 (see also [16]). They corrected the conclusion in [10] that 

the optimal constant is 𝜅 = 2.  

Unless specifically noted, the Banach spaces (indicated by X and Y) considered here 

are real Banach spaces, and 𝑋∗ is the dual space of 𝑋. We use 𝐵𝑋 and 𝑆𝑋 to denote the closed 

unit ball and unit sphere of 𝑋, respectively. 𝑐𝑜̅̅ ̅(A) and 𝑠𝑝𝑎𝑛̅̅ ̅̅ ̅̅ ̅(A), respectively, represent the 

closed convex hull and closed linear hull of the set 𝐴 ⊂  𝑋. 

 

 

2. WEAK STABILITY OF 𝜺-ISOMETRIES ON STRICTLY CONVEX SPACES 

 

 

This section proves that when 𝑌∗ is strictly convex, the optimal constant in Theorem 

1.1 is κ = 2, which is an improvement result of [15]. 

 

Proposition 2.1. Suppose 𝔘 is a free ultrafilter on X, and K is a compact Hausdorff space. 

Then for any mapping f: X →  K, an ultrafilter limit, lim𝔘f, exists. 
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Since every closed unit ball is weak* compact (The Banach-Alaoglu Theorem), 

according to Proposition 2.1 and Theorem 1.1, it is not difficult to verify the following 

lemma. 

 

Lemma 2.2. Let f: X → Y be a standard ε-isometry, and 𝔘 is the free ultrafilter on ℕ, then 

 

Φ(𝑥) = 𝑤∗ − lim
𝔘

𝑓(𝑛𝑥)

𝑛
, 𝑥 ∈ 𝑋 

 

is an isometry from X to Y∗∗, where w∗ − lim𝔘 represents the 𝔘-limit of the ultrafilter in the 

sense of w∗- topology in Y∗∗. 

For the dual space 𝑋∗ of Banach space 𝑋, we use ℜ(𝑋∗) to denote the collection 

generated by all 𝑤∗-compact convex subsets in 𝑋∗. 

 

Definition 2.3. For the dual space X∗ of Banach space X, let ℜ(X∗) denote the collection 

generated by all w∗-compact convex subsets in X∗. Let f: X → ℝ be a convex function. Its 

subdifferential mapping ∂f: X → ℜ(X∗) is defined as 

 

𝜕𝑓(𝑥) = {𝑥∗ ∈ 𝑋∗ ∶ 𝑓(𝑦) − 𝑓(𝑥) ≥ 〈𝑥∗, 𝑦 − 𝑥〉, ∀𝑦 ∈ 𝑋}. 
 

In particular, when 𝑓 =
1

2
‖∙‖2, 𝜕𝑓 is called dual mapping; when 𝑓 = ‖∙‖, ∂f is called 

supporting mapping (See [22] and [23]). 

 

Lemma 2.4. Let f: X →  Y be a standard ε-isometry, 𝔘 be the free ultrafilter on ℕ, and Φ be 

an isometry from X to Y∗∗ defined in Lemma 2.2, z ∈ SX is Gateaux smooth point, x∗ = d‖∙‖, 

then for any x ∈ X, there exists φ, ψ ∈ ∂‖Φ(z)‖ ∩ Y∗, such that 

 
〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉 ≤ 2𝜀, (2.1) 

and 
〈𝑥∗, 𝑥〉 − 〈𝜓, 𝑓(𝑥)〉 ≥ −2𝜀. (2.2) 

 

Particularly, when Y∗ is strictly convex, for z above, there exists a unique φ ∈
∂‖Φ(z)‖ ∩ Y∗, such that 

 

|〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉| ≤ 2𝜀 (2.3) 

 

Proof: Since 𝑥∗ = 𝑑‖∙‖ (∈  𝑆𝑋∗), for any 𝑥 ∈ 𝑋, we have 

 

lim
𝑡→+∞

(‖𝑥 + 𝑡𝑧‖ − 𝑡) = lim
𝑡→0+

‖𝑧 + 𝑡𝑥‖ − ‖𝑧‖

𝑡
= 〈𝑥∗, 𝑥〉. (2.4) 

 

For 𝑛 ∈ ℕ, take 𝜑𝑛 ∈ 𝑆𝑌∗ such that ⟨𝜑𝑛, 𝑓(𝑥 +  𝑛𝑧)⟩ = ∥ 𝑓(𝑥 +  𝑛𝑧) ∥, then 
‖𝑓(𝑥 + 𝑛𝑧)‖ = 〈𝜑𝑛, 𝑓(𝑥 + 𝑛𝑧)〉 

= 〈𝜑𝑛, 𝑓(𝑥)〉 + 〈𝜑𝑛, 𝑓(𝑥 + 𝑛𝑧) − 𝑓(𝑥)〉 
≤ 〈𝜑𝑛, 𝑓(𝑥)〉 + ‖𝑓(𝑥 + 𝑛𝑧) − 𝑓(𝑥)‖ 

≤ 〈𝜑𝑛, 𝑓(𝑥)〉 + (𝑛 + 𝜀) 

and then, 

 

lim
𝑛

inf(‖𝑓(𝑥 + 𝑛𝑧)‖ − 𝑛) ≤ lim
𝔘

〈𝜑𝑛, 𝑓(𝑥)〉 + 𝜀 = 〈𝜑, 𝑓(𝑥)〉 + 𝜀, (2.5) 
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where 𝜑 = 𝑤∗ − 𝑙𝑖𝑚𝔘 𝜑𝑛 ∈ 𝐵𝑌∗. On the other hand, 

 

lim
𝑛

inf(‖𝑓(𝑥 + 𝑛𝑧)‖ − 𝑛) ≥ lim
𝑛

inf[(‖𝑥 + 𝑛𝑧‖ − 𝜀) − 𝑛] 

 = lim
𝑛

inf
‖𝑧 +

1
𝑛

𝑥‖ − ‖𝑧‖

𝑛−1
− 𝜀 

= 〈𝑥∗, 𝑥〉 − 𝜀. 
Therefore, 

lim
𝑛

inf(‖𝑓(𝑥 + 𝑛𝑧)‖ − 𝑛) ≥ 〈𝑥∗, 𝑥〉 − 𝜀.  (2.6) 

 

Combine (2.5) and (2.6) together 

 

〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉 ≤ 2𝜀. (2.7) 

 

We will prove that 𝜑 ∈ 𝜕‖Φ(z)‖ ∩ 𝑌∗. For any 𝑛 ∈ ℕ, we have 

 

𝑡 + 𝜀 ≥ ‖𝑓(𝑡𝑧)‖ 

≥ 〈𝜑𝑛, 𝑓(𝑡𝑧)〉 
= 〈𝜑𝑛, 𝑓(𝑥 + 𝑡𝑧)〉 − 〈𝜑𝑛, 𝑓(𝑥 + 𝑡𝑧) − 𝑓(𝑡𝑧)〉 

≥ ‖𝑓(𝑥 + 𝑡𝑧)‖ − ‖𝑓(𝑥 + 𝑛𝑧) − 𝑓(𝑡𝑧)‖ 

≥ (‖𝑥 + 𝑛𝑧‖ − 𝜀) − ‖𝑥 − (𝑛 − 𝑡)𝑧‖ − 𝜀 

≥ 𝑡 − 2(‖𝑥‖ + 𝜀). 

Put n → ∞, then 

 

𝑡 + 𝜀 ≥ ‖𝑓(𝑡𝑧)‖ ≥ 〈𝜑, 𝑓(𝑡𝑧)〉 ≥ 𝑡 − 2(‖𝑥‖ + 𝜀). (2.8) 

 

Divide both sides by 𝑡 (> 0), set 𝑡 → +∞, and note that 𝑤∗ − 𝑙𝑖𝑚𝔘
𝑓(𝑡𝑧)

𝑡
= Φ(z), then 

 
〈𝜑, Φ(𝑧)〉 = ‖Φ(𝑧)‖ = 1. (2.9) 

 

Therefore, 𝜑 ∈ 𝜕‖Φ(z)‖ ∩ 𝑌∗. This proves that for any 𝑥 ∈  𝑋, there exists 𝜑 ∈
𝜕‖Φ(z)‖ ∩ 𝑌∗ such that (2.1) holds. On the other hand, for a given 𝑥 ∈ 𝑋, 𝑛 ∈ ℕ, let 𝜓𝑛 ∈
𝑆𝑌∗ such that 

〈 𝜓𝑛, 𝑓(𝑥 + 𝑛𝑧) − 𝑓(𝑥)〉 = ‖𝑓(𝑥 + 𝑛𝑧) − 𝑓(𝑥)‖, 

Then 

‖𝑓(𝑥 + 𝑛𝑧)‖ ≥ 〈 𝜓𝑛, 𝑓(𝑥 + 𝑛𝑧)〉 
= ‖𝑓(𝑥 + 𝑛𝑧) − 𝑓(𝑥)‖ + 〈 𝜓𝑛, 𝑓(𝑥)〉 

≥ ‖𝑛𝑧 − 𝜀‖ + 〈 𝜓𝑛, 𝑓(𝑥)〉 
= 𝑛 − 𝜀 + 〈 𝜓𝑛, 𝑓(𝑥)〉. 

Therefore,  

 

lim
𝑛

inf(‖𝑓(𝑥 + 𝑛𝑧)‖ − 𝑛) ≥ 〈𝜓, 𝑓(𝑥)〉 − 𝜀, (2.10) 

 

where ψ = 𝑤∗ − 𝑙𝑖𝑚𝔘ψ𝑛. Also due to 

 

‖𝑓(𝑥 + 𝑛𝑧)‖ − 𝑛 ≤ (‖𝑥 + 𝑛𝑧‖ + 𝜀) − 𝑛 

=
‖𝑧 + 𝑛−1𝑥‖

𝑛−1
+ 𝜀 → 〈𝑥∗, 𝑥〉 + 𝜀, 
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then 

lim
𝑛

inf(‖𝑓(𝑥 + 𝑛𝑧)‖ − 𝑛) ≤ 〈𝑥∗, 𝑥〉 − 𝜀, (2.11) 

 

(2.10) and (2.11) give 

 

〈𝑥∗, 𝑥〉 − 〈𝜓, 𝑓(𝑥)〉 ≥ −2𝜀. (2.12) 

Note that 

 

𝑡 + 𝜀 ≥ ‖𝑓(𝑡𝑧)‖ ≥ 〈 𝜓𝑛, 𝑓(𝑡𝑧)〉 
= 〈 𝜓𝑛, 𝑓(𝑥 + 𝑡𝑧) − 𝑓(𝑥)〉 − 〈 𝜓𝑛, 𝑓(𝑥 + 𝑡𝑧) − 𝑓(𝑡𝑧)〉 + 〈 𝜓𝑛, 𝑓(𝑥)〉 

≥ ‖𝑓(𝑥 + 𝑡𝑧) − 𝑓(𝑥)‖ − ‖𝑓(𝑥 + 𝑡𝑧) − 𝑓(𝑡𝑧)‖ − ‖𝑓(𝑥)‖ 

≥ (‖𝑛𝑧‖ − 𝜀) − (‖𝑥 + (𝑛 − 𝑡)𝑧‖ − 𝜀) − (‖𝑥‖ + 𝜀) 

≥ 𝑡 − 2‖𝑥‖ − 3𝜀, 

then we get 

𝑡 + 𝜀 ≥ ‖𝑓(𝑡𝑧)‖ ≥ 〈𝜓, 𝑓(𝑡𝑧)〉 ≥ 𝑡 − 2‖𝑥‖ − 3𝜀. 

 

Therefore, 

1 = lim
𝑡→+∞

⟨𝜓,
𝑓(𝑡𝑧)

𝑡
⟩ = ⟨𝜓, Φ(𝑧)⟩. 

 

Furthermore, since ⟨𝜓, Φ(z)⟩ =∥ Φ(z) ∥ = 1, we know that 

 

𝜓 ∈ 𝜕‖Φ(z)‖ ∩ 𝑌∗. 
 

In this way, we prove that for any 𝑥 ∈ 𝑋, there exists 𝜓 ∈ 𝜕‖Φ(z)‖ ∩ 𝑌∗ such that 

(2.2) is true. In particular, when 𝑌∗ is strictly convex, 𝜕‖Φ(z)‖ ∩ 𝑌∗ is a single point set. 

Therefore, 𝜑 = 𝜓. Combine (2.1) and (2.2) immediately yields (2.3) and the proof is 

complete.  

Using the lemma above, we get the following better estimation when 𝑌∗ is strictly 

convex space. 

 

Theorem 2.6. Let f: X →  Y be a standard ε-isometry. If Y∗ is strictly convex, then for any 

x∗ ∈ X∗, there is φ ∈ Y∗ that satisfies ‖φ‖  ≡ r = ‖x∗‖, such that 

 

|〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉| ≤ 2𝑟𝜀, 𝑥 ∈ 𝑋. 
 

Proof: Compared with Lemma 3.3 in [16], except for replacing Lemma 3.2 with Lemma 2.4, 

and the rest is completely the same.  

 

 

3. WEAK STABILITY OF 𝜺-ISOMETRIES ON REFLEXIVE SPACES 

 

 

This section reviews the series of results of using the weak stability theorem to study 

ε-isometries, and at the same time gives a new proof. In recent years, the weak stability 

estimation has played an irreplaceable role in the study of ε-isometry. For example, when ε = 

0, it is Figiel theorem (see [24]); when ε = 0 and the mapping is surjective, it is the Mazur-

Ulam theorem (see [1]). Proposition 2.1 is a direct inference of the weak stability estimation. 

It is a result of the following Qian-Šemrl-Väisälä theorem [18]. 
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Theorem 3.1. Assuming that X and Y are both LP spaces (1 < p < ∞), f: X → Y is a standard 

ε-isometry, then there exists a linear operator T: Y → X with norm 1 such that 

 
‖𝑇𝑓(𝑥) − 𝑥‖ ≤ 2𝜀, ∀𝑥 ∈ 𝑋. (3.1) 

 

Proof: Note that the 𝐿𝑃 spaces (1 < 𝑝 < ∞) is reflexive and uniformly smooth and uniformly 

convex. It is known from Theorem 2.6 that for any 𝑥∗ ∈ 𝑋∗, there is 𝜑 ∈ 𝑌∗ that satisfies 
‖𝜑‖ ≡ 𝑟 =  ‖𝑥∗‖, such that 
 

|〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉| ≤ 2𝑟𝜀, 𝑥 ∈ 𝑋. (3.2) 

 

From Lemma 2.2, 

 

Φ(x) = 𝑤∗ − lim
𝑛

𝑓(𝑛𝑥)

𝑛
= lim

𝑛

𝑓(𝑛𝑥)

𝑛
, 𝑥 ∈ 𝑋 (3.3) 

 

defines a linear isometry Φ: 𝑋 → 𝑌, and Φ∗(𝜑)  = 𝑥∗. Therefore, 𝑍 ≡ Φ(𝑋) ⊂ 𝑌 is the 1-

complemented subspace of Y (see [25]), and 𝑥∗ →  𝜑⌉𝑍 is a linear isometry mapping. 

Furthermore, 𝑆𝑥∗ = 𝜑 defines a linear isometry mapping, 𝑆: 𝑋∗ → 𝑌∗. Let 𝑇 = 𝑆∗, then 

𝑇: 𝑌 → 𝑋 is a linear surjective with norm 1. Furthermore, 

 

2𝑟𝜀 ≥ |〈𝑥∗, 𝑥〉 − 〈𝜑, 𝑓(𝑥)〉| 
= |〈𝑥∗, 𝑥〉 − 〈𝑆𝑥∗, 𝑓(𝑥)〉| 
= |〈𝑥∗, 𝑥〉 − 〈𝑥∗, 𝑇𝑓(𝑥)〉| 

 

It is easy to see that the inequality above is equivalent to (3.1). To make the discussion 

of stability consistent, we will first prove a lemma. 

 

Lemma 3.2. Suppose X is an infinite-dimensional separable Banach space, then there is a 

linearly independent subset S ⊂ X such that S̅ = X. 

 

Proof: Arbitrarily take a countable dense subset of X, (xn)n=1
∞ , let X0 = span(xn)n=1

∞ . Let 

I0 ⊂ (xn)n=1
∞  is a linearly independent maximal subset of X0, then there is a linearly 

independent subset I1 ≡ (zα) ⊂  SX of X such that X0 ∩ X1 = {0}, and I = I0 ∪ I1 is a linearly 

independent maximal subset of X, where X1 =  span(I1). In this way, we know that X =
X0 ⊕ X1 (algebraic direct sum). Take a countable infinite number of disjoint countable 

infinite subsets from (I1,n)
n=1

∞
 (where I1,n = (zn,j)n=1

∞
), and let Jn = {

zn,j

j
: j ∈ ℕ}. Then, let 

S = ⋃ {xn + Jn}n∈ℕ  is enough.  

 

Theorem 3.3. If Y is reflexive, then the stability of standard ε-isometry f: X → Y is determined 

separately, that is, the sufficient and necessary conditions of f to be stable is that there exists 

β, γ >  0, such that for every separable subspace E of X, a linear operator TE: E → Y satisfy 

 
‖𝑇𝐸‖ ≤ 𝛽, ‖𝑇𝐸𝑓(𝑥) − (𝑥)‖ ≤ 𝛾𝜀, 𝑥 ∈ 𝐸 (3.4) 

 

Proof: We only need to prove the sufficient condition. By Lemma 2. 2, for any free ultrafilter 

𝔘 on ℕ, Φ(x) = 𝑤 − lim𝔘
𝑓(𝑛𝑥)

𝑛
 (𝑥 ∈ 𝑋), defines an isometry Φ: 𝑋 → 𝑌. According to Figiel 
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theorem [24], there exists a linear operator 𝐹 ∶ span̅̅ ̅̅ ̅̅ (Φ(𝑋)) → 𝑋 with the norm 1 such that 

𝐹 ◦ Φ = 𝑖𝑑𝑋. Let E be a separable subspace of X. According to the assumption, there is a 

linear operator 𝑇𝐸: 𝐸 → 𝑌 with a norm of no more than 𝛽, 𝛽 > 0, such that 

 
‖𝑇𝐸𝑓(𝑥) − (𝑥)‖ ≤ 𝛾𝜀, 𝑥 ∈ 𝐸. 

 

We use 𝔍 to represent the family of sets that consists of all finite-dimensional 

subspace of X. The power set 2𝔍 contains the inclusion relation of subsets forms a filter 𝔉 on 

𝔍. We denote the ultrafilter containing the filter 𝔉 as 𝔘𝔍, then 

 

𝑤 − lim
𝔘𝔍

𝑇𝐹(𝑦),  𝑦 ∈ 𝑌𝑓 = span̅̅ ̅̅ ̅̅ [𝑓(𝑥)] 

 

defines a linear operator 𝑇: 𝑋 → 𝑌, and satisfies 

 
‖𝑇‖ ≤ 𝛽, ‖𝑇𝑓(𝑥) − (𝑥)‖ ≤ 𝛾𝜀, 𝑥 ∈ 𝑋  

 

which is what desired in 3.4 and the proof is complete. 
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