ORIGINAL PAPER AN EXTENSION OF SOME SOLUTIONS OF THE FALKNER-SKAN EQUATION

FATMA LABBAOUI¹, MOHAMMED AIBOUDI¹

Manuscript received: 10.01.2023; Accepted paper: 18.04.2023; Published online: 30.06.2023.

Abstract. The differential equation $\varphi''' + \varphi \varphi'' + \alpha (\varphi'^2 - 1) = 0$ where $\alpha > 0$ is appeared for studying the boundary layer flow past a semi infinitewedge. As a means to prove the existence of solutions verifying $(0) = a \ge \sqrt{\frac{1}{1-\alpha}}$, $\varphi'(0) = b \ge 0$ and $\varphi'(t) \to 1$ or $-1 \text{ as } t \to +\infty$ for $0 < \alpha < 1$. We utilize shooting technique and consider the initial conditions $\varphi(0) = a$, $\varphi'(0) = b$ and $\varphi''(0) = c$. We demonstrate that there exists an infinitely many solutions where $\varphi'(+\infty) = 1$.

Keywords: third ordernonlinear differential equation; boundary layer; convex solution; shooting technique; concave solution; convex-concave solution.

1. INTRODUCTION

The third order autonomous nonlinear differential equation

$$\varphi''' + \varphi \varphi'' + \alpha (\varphi'^2 - 1) = 0$$
 (1)

is introduced in 1931 by Falkner and Skan for studying the boundary layer flow past a semi infinite wedge and for this reason is called the Falkner-Skan equation. Many authors as in [1-6] have studied the solutions of this equation.

The general equation of (1) is

$$\varphi^{\prime\prime\prime} + \varphi \varphi^{\prime\prime} + \rho \left(\varphi\right) = 0 \tag{2}$$

where $\rho: \mathbb{R} \to \mathbb{R}$ is some function. The Blasius equation is the most famous example, with $\rho(x) = 0$ and arises in the study of laminar boundary layer on a flat plate (see [7]).

Newly, the equation (2) with $g(x) = \beta x^2$ and $g(x) = \beta x(x-1)$ has been considered, for example, in the study of free convection and of mixed convection boundary layer flows over a vertical surface embedded in a porous medium (see [8, 9]).

Usually, to solve the boundary value problem $(P_{\alpha;a,b,\nu})$ where:

$$\left(P_{\alpha;a,b,\gamma}\right) \begin{cases} \varphi^{\prime\prime\prime} + \varphi \varphi^{\prime\prime} + \alpha \left(\varphi^{\prime 2} - 1\right) = 0 , \\ \varphi(0) = a, \\ \varphi^{\prime}(0) = b, \\ \lim_{t \to +\infty} \varphi^{\prime}(t) = \gamma . \end{cases}$$

¹University Oran 1, Ahmed Ben Bella, Department of Mathematics, Faculty of Exact and Applied Sciences, Laboratory of Mathematics Analysis and Applications (L.A.M.A), Oran, Algeria. E-mail: fatimalabbaoui@yahoo.fr; m.aiboudi@yahoo.fr

We will use the shooting technique. We denote φ_c the solution of the initial value problem $P_i(a, b, c)$ consisting in the equation (1) with the initial conditions $\varphi(0) = a$, $\varphi'(0) = b$ and $\varphi''(0) = c$. We consider $[0, I_c)$ the right maximal interval of existence of φ_c . To get a solution of $(P_{\alpha;a,b,\gamma})$ equivalent to find a value of c where $I_c = +\infty$ and $\varphi'_c(t) \to \gamma$ as $t \to +\infty$.

For condition of γ one prove that if γ is constant then $(\gamma^2 - 1) = 0$. To have solutions, in our case of Falkner-Skan equation, the only relevant conditions are $\varphi'(t) \rightarrow -1$ or $\varphi'(t) \rightarrow 1$ as $t \rightarrow +\infty$.

In this work, we will study the existence of concave, convex, concave-convex, convex-concave, concave-convex-concave and convex-concave-convex solutions to the boundary value problem $(P_{\alpha;a,b,-1})$ and $(P_{\alpha;a,b,1})$ for $0 < \alpha < 1$, $a \ge \sqrt{\frac{1}{1-\alpha}}$ and $b \ge 0$.

2. PRELIMINARY RESULTS

We consider φ as a solution to the equation (1) on some interval *J*, let $K_{\varphi}: J \to \mathbb{R}$ be the function defined by

$$K_{\varphi} = [\varphi'' + \alpha \varphi(\varphi' - 1)] exp^{(1-\alpha)F}.$$
(3)

where F denote any primitive function of φ . This function is got by integrating the equation (1). In fact, if φ is a solution of (1) then

$$K'_{\varphi} = \left[\alpha(\varphi'-1)\left((1-\alpha)\varphi^2-1\right)\right]exp^{(1-\alpha)F}.$$

In the following, we put lemmas that will be useful later.

Lemma 2.1. We consider φ as a solution to (1) on some maximal interval *J*. If there exists $t_0 \in J$ such that $\varphi'(t_0) \in \{-1, 1\}$ and $\varphi''(t_0) = 0$, then $J = \mathbb{R}$ and $\varphi''(t) = 0$ for all $t \in \mathbb{R}$.

Proof: Cf [10]. Proposition 3.1 item 3.

Lemma 2.2. We consider $\alpha > 0$ and φ be a solution to equation (1) on some interval *J*, such that φ' is not constant.

- 1) If there exists $x < y \in J$ such that $\varphi''(x) \le 0$ and $({\varphi'}^2 1) > 0$ on]x, y[, then $\varphi''(t) < 0$ for all $t \in]x, y]$.
- 2) If there exists $x < y \in J$ such that $\varphi''(x) \ge 0$ and $({\varphi'}^2 1) < 0$ on]x, y[, then $\varphi''(t) > 0$ for all $t \in]x, y]$.
- 3) If there exists $x < y \in J$ such that $\varphi'' < 0$ on]x, y[and $\varphi''(y) = 0$, then $(\varphi'^2(y) 1) < 0$.
- 4) If there exists $x < y \in J$ such that $\varphi'' > 0$ on]x, y[and $\varphi''(y) = 0$, then $({\varphi'}^2(y) 1) > 0$.

Proof: We consider F as a primitive function of φ . From (1) we deduce the relation

$$(\varphi''expF)' = -\alpha(\varphi'^2 - 1)expF.$$

The assertions 1-4 obtain easily from this relation and from preceding lemma. We verify the first and the third of these assertions. For the first one, as $\psi = \varphi'' expF$ is decreasing on [x, y], we get

$$t \ge x \Rightarrow \psi(t) \le \psi(x)$$

$$\Rightarrow \varphi''(t)expF(t) \le \varphi''(s)expF(x)$$

$$\Rightarrow \varphi''(t) \le \varphi''(x)exp(F(x) - F(t))$$

$$\Rightarrow \varphi''(t) \le 0, \forall t \in]x, y].$$

For the third one, as $\psi < 0$ on]x, y[and $\psi(y) = 0$, then $\psi'(y) \ge 0$.

$$\psi'(y) = -\alpha({\varphi'}^2(y) - 1)expF \ge 0.$$

This and Lemma 2.1 imply that $({\varphi'}^2(y) - 1) < 0$.

Lemma 2.3. We consider φ as a solution to (1) on some maximal interval $]I_{-}, I_{+}[$. If I_{+} is finite, then φ' and φ'' are unbounded in any neighborhood of I_{+} .

Proof: According [10], Proposition 3.1 item 6.

Lemma 2.4. We put $\alpha \neq 0$. If φ is a solution of (1) on some interval $]\eta, +\infty[$ such that $\varphi'(t) \rightarrow \gamma$ as $t \rightarrow +\infty$, then $\gamma \in \{-1, 1\}$. In addition, if φ is of constant sign at infinity, then $\varphi''(t) \rightarrow 0$ as $t \rightarrow +\infty$.

Proof: According [10], Proposition 3.1 item 4 and 5.

Lemma 2.5. We put $\alpha > 0$ and we consider φ as a solution to (1) on some right maximal interval $J = [\eta, +\infty[$. If $\varphi \ge 0$ and $\varphi' \ge 0$ on J, then $I_+ = +\infty$ and φ' is bounded on J.

Proof: We put $G = G_{\omega}$ the function defined on *J* by

$$G(t) = 3\varphi''(t)^2 + \alpha\varphi'(t)(2\varphi'^2(t) - 6)$$
(4)

Using (1), simply we get that

$$G'(t) = -6\varphi(t)\varphi''(t)^2 \quad \forall t \in J$$

and, as $\varphi \ge 0$ on *J* this implies that *G* is decreasing. Therefore

$$\begin{aligned} \forall t \in J &= [\eta, I_+[:t > \eta \Rightarrow G(t) \leq G(\eta) \\ \alpha \varphi'(t)(2\varphi'(t)^2 - 6) \leq 3\varphi''(t)^2 + \alpha \varphi'(t)(2\varphi'^2(t) - 6) \leq G(\eta), \forall t \in J \end{aligned}$$

It follows that φ' is bounded on J and thanks to lemma 2.3 that $I_+ = +\infty$.

Lemma 2.6. We put $\alpha > 0$ and we consider φ as a solution to (1) on some right maximal interval $J = [\eta, I_+[$. If $\varphi(\eta) \ge 0$, $\varphi'(\eta) \ge 1$ and $\varphi''(\eta) > 0$, then there exists $t_0 \in]\eta, I_+[$ where $\varphi'' > 0$ on $[\eta, t_0[$ and $\varphi''(t_0) = 0$.

www.josa.ro

Proof: Suppose for contradiction that $\varphi'' > 0$ on *J*. Then $\varphi(t) \ge 0$, $\varphi'(t) \ge 1$ for all $t \in J$. Then we get

$$\varphi^{\prime\prime\prime} = -\varphi\varphi^{\prime\prime} - \alpha(\varphi^{\prime 2} - 1) \le 0 \tag{5}$$

It follows that $0 < \varphi''(t) \le c$ for all $t \in J$ and therefore, by Lemma 2.4, we get $I_+ = +\infty$. After, we put $x > \eta$ and $\epsilon = \alpha(\varphi'(x)^2 - 1)$. One has $\epsilon > 0$ and, come again to (5), we get

$$\varphi^{\prime\prime\prime} \leq -\epsilon \text{ on } [x, +\infty[$$

By integrating, we obtain

$$\forall t \ge x, \qquad \varphi''(t) - \varphi''(x) \le -\epsilon(t-x)$$

and a contradiction with the fact that $\varphi''(t) > 0$. Therefore, there exists $t_0 \in]\eta, I_+[$ where $\varphi'' > 0$ on $[\eta, t_0[$ and $\varphi''(t_0) = 0$.

Lemma 2.7. We put $\alpha \in [\frac{1}{2}, 1[$ and we consider φ as a solution to (1) on some right maximal interval $J =]I_{-}, I_{+}[$. If there exists $t_0 \in J$ where $\varphi(t_0) > \sqrt{\frac{1}{1-\alpha}}, \varphi'(t_0) > 1$ and

$$\alpha\varphi(t_0)(1-\varphi'(t_0))\leq\varphi''(t_0)\leq 0.$$

Then $I_+ = +\infty$ and $\varphi'(t) \to 1$ as $t \to +\infty$. In addition $\varphi'' \le 0$ on $[t_0, +\infty[$.

Proof: We put $\mu = \sup S(t_0)$, such that

$$S(t_0) = \{t \in]t_0, I_+[: 1 < \varphi' < \varphi'(t_0) \text{ and } \varphi'' < 0 \text{ on }]t_0, t[\}$$

The set $S(t_0)$ is not empty. This is clear if $\varphi''(t_0) < 0$, and if $\varphi''(t_0) = 0$ it follows from the fact that

$$\varphi^{\prime\prime\prime}(t_0) = -\alpha({\varphi^{\prime}}^2(t_0) - 1) < 0$$

We stay to prove that $\mu = I_+$, suppose for contradiction that $\mu < T_+$. From Lemma 2.2, item 1, we obtain that $\varphi''(\mu) < 0$, which implies, by definition of μ , that $\varphi'(\mu) = 1$. Hence, as the function K_f defined by (3) is increasing on $[t_0, \mu]$, we get

$$\mu \geq t_0 \Rightarrow K_{\varphi}(\mu) \geq K_{\varphi}(t_0)$$
$$\Rightarrow \varphi''(\mu)exp(1-\alpha)F(\mu) \geq [\varphi''(t_0) - \alpha\varphi(t_0)(1-\varphi'(t_0))]exp(1-\alpha)F(\mu) \geq 0$$
$$\Rightarrow \varphi''(\mu) \geq 0.$$

a contradiction. In consequence, we have $\mu = I_+$. From Lemma 2.3, it follows that $I_+ = +\infty$. As $\varphi'' < 0$ on $[t_0, +\infty]$, by vertue of Lemma 2.4, we obtain that $\varphi'(t) \to 1$ as $t \to +\infty$.

Lemma 2.8. We consider $\alpha \in [\frac{1}{2}, 1[$ and φ a solution to equation (1) on some right maximal interval $J =]I_{-}, I_{+}[$. If there exists $t_0 \in J$ such that $\varphi(t_0) > \sqrt{\frac{1}{1-\alpha}}, 0 < \varphi'(t_0) < 1$ and

$$0 \leq \varphi''(t_0) \leq \alpha \varphi(t_0)(1 - \varphi'(t_0)).$$

Then $I_+ = +\infty$ and $\varphi'(t) \to 1$ as $t \to +\infty$. In addition $\varphi'' \ge 0$ on $[t_0, +\infty]$.

Proof: If we put $\lambda = supR(t_0)$, with

$$R(t_0) = \{t \in]t_0, I_+[:\varphi'(t_0) < \varphi' < 1 \text{ and } \varphi'' > 0 \text{ on }]t_0, t[\}.$$

The set $R(t_0)$ is not empty. This is clear if $\varphi''(t_0) > 0$, and if $\varphi''(t_0) = 0$ it follows from the fact that

$$\varphi^{\prime\prime\prime}(t_0) = -\alpha({\varphi^{\prime}}^2(t_0) - 1) > 0$$

We claim that $\lambda = I_+$, suppose for contradiction that $\lambda < I_+$. From Lemma 2.2, item 2, we obtain that $\varphi''(\lambda) > 0$, which implies, by definition of λ , that $\varphi'(\lambda) = 1$. Hence, as the function K_{φ} defined by (3) is decreasing on $[t_0, \lambda]$, we get

$$\lambda \geq t_0 \Rightarrow K_{\varphi}(\lambda) \leq K_{\varphi}(t_0)$$
$$\Rightarrow \varphi''(\lambda)exp(1-\alpha)F(\lambda) \leq [\varphi''(t_0) - \alpha\varphi(t_0)(1-\varphi'(t_0))]exp(1-\alpha)F(\lambda) \leq 0$$
$$\Rightarrow \varphi''(\lambda) \leq 0.$$

a contradiction. In consequence, we have $\lambda = I_+$. From Lemma 2.3, it follows that $I_+ = +\infty$. As $\varphi'' > 0$ on $[t_0, +\infty]$, by vertue of Lemma 2.4, we obtain that $\varphi'(t) \to 1$ as $t \to +\infty$.

Lemma 2.9. We consider $\alpha \in [\frac{1}{2}, 1[$ and φ a solution to equation (1) on some right maximal interval $J =]I_{-}, I_{+}[$. If there exists $t_0 \in J$ such that $\varphi(t_0) > \sqrt{\frac{1}{1-\alpha}}, 0 < \varphi'(t_0) < 1$ and

$$-\alpha\varphi(t_0)\varphi'(t_0) \le \varphi''(t_0) \le 0,$$

Then $I_+ = +\infty$ and $\varphi'(t) \to 1$ as $t \to +\infty$. In addition there exist $\eta \ge t_0$ such that $\varphi'' \le 0$ on $[t_0, \eta[$ and $\varphi'' \ge 0$ on $[\eta, +\infty[$.

Proof: If $\varphi''(t_0) = 0$, the conclusion follows from Lemma 2.8.

If
$$\varphi''(t_0) < 0$$
, we put $\theta = \sup T(t_0)$
 $T(t_0) = \{t \in]t_0, I_+[: 0 < \varphi' < \varphi'(t_0) \text{ and } \varphi'' < 0 \text{ on }]t_0, t[\}$

The set $T(t_0)$ is not empty. We claim that $\theta < I_+$. Suppose for contradiction that $\theta = I_+$. From Lemma 2.3, we get that $\theta = I_+ = +\infty$, $0 < \varphi' < \varphi'(t_0)$ and $\varphi'' < 0$ on $]0, +\infty[$. Then φ'_c is decreasing, and consequently φ'_c has a finite limite γ at infinity. By Lemma 2.4, we finally obtain that $\gamma \in \{-1,1\}$ a contraduction. In consequence we have $\theta < I_+$.

By definition of θ , that $\varphi'(\theta) = 0$ or $\varphi''(\theta) = 0$. We claim that $\varphi'(\theta) \neq 0$, suppose for contraduction that $\varphi'(\theta) = 0$, we consider the function $L_{\varphi}: [t_0, \theta] \to \mathbb{R}$ defined by

$$L_{\varphi} = (\varphi'' + \alpha \varphi \varphi') exp(1 - \alpha)F,$$

where F denote any primitive function of φ , in fact, if φ is a solution of (1) then

$$L'_{\varphi} = [((1-\alpha)\varphi^2\varphi'+1)]exp(1-\alpha)F$$

The function L_{φ} is increasing on $[t_0, \theta]$, we get

$$\theta \ge t_0 \Rightarrow L_{\varphi}(\theta) \ge L_{\varphi}(t_0)$$
$$\Rightarrow \varphi''(\theta) exp(1-\alpha)F(\theta) \ge [\varphi''(t_0) + \alpha\varphi(t_0)\varphi'(t_0)]exp(1-\alpha)F(\theta) \ge 0$$
$$\Rightarrow \varphi''(\theta) \ge 0.$$

A contradiction. Consequently, we have $\varphi''(\theta) = 0$ and $0 < \varphi'(\theta) < 1$. From Lemma 2.8 it follows that $I_+ = +\infty$ and $\varphi'(t) \to 1$ as $t \to +\infty$.

3. DESCRIPTION OF OUR APPROACH WHEN $b \ge 1$

We consider $\alpha > 0$, $a \ge \sqrt{\frac{1}{1-\alpha}}$ and $b \ge 1$. The method we will use to obtain solutions of the boundary value problems $(P_{\alpha;a,b,-1})$ and $(P_{\alpha;a,b,1})$ is the shooting technique. Specifically, for $c \in \mathbb{R}$, we denote by φ_c the solution of equation (1) verifying the initial conditions

$$\varphi_c(0) = a, \ \varphi'_c(0) = b \text{ and } \varphi''_c(0) = c$$
 (6)

and we consider $[0, I_c[$ the right maximal interval of existence of φ_c . Therefore, finding a solution of one of the problems $(P_{\alpha;a,b,-1})$ and $(P_{\alpha;a,b,1})$ amounts to finding a value of c where $I^+ = +\infty$ and $\varphi'(t) \to -1$ or 1 as $t \to +\infty$.

We divide \mathbb{R} into the four sets E_0 , E_1 , E_2 and E_3 defined as follows. We put

 $F = -10 \pm \infty$

$$E_{0} = [0, +\infty[.$$

$$E_{1} = \{c \le 0; \ 1 \le \varphi_{c}' \le b \text{ and } \varphi_{c}'' \le 0 \text{ on } [0, I_{c}[\} .$$

$$E_{2} = \{c \le 0; \ \exists \ z_{c} \in [0, I_{c}[, \exists \ \delta_{c} > 0 \text{ such that } \varphi_{c}' > 1 \text{ on }]0, z_{c}|$$

$$\varphi_{c}' < 1 \text{ on }]z_{c}, z_{c} + \delta_{c}[\text{ and } \varphi_{c}'' \le 0 \text{ on } [0, z_{c} + \delta_{c}[] .$$

and

$$E_{3} = \{ c \le 0; \exists y_{c} \in [0, I_{c}[, \exists \sigma_{c} > 0 \text{ such that} \varphi_{c}^{\prime \prime} < 0 \text{ on }]0, y_{c}[\varphi_{c}^{\prime \prime} > 0 \text{ on }]y_{c}, y_{c} + \delta_{c}[\text{ and} \varphi_{c}^{\prime} > 1 \text{ on }]0, y_{c} + \sigma_{c}[\}.$$

This is evident that E_0, E_1, E_2 and E_3 are disjoint sets and that their union is the whole line of real numbers. Thanks to Lemma 2.3 and 2.4 if $c \in E_1$ then $I_+ = +\infty$ and $\varphi'_c(t) \rightarrow$ 1 as $t \rightarrow +\infty$. In fact, E_1 is the set of values of c for which φ_c is a concave solution of $(P_{\alpha;a,b,1})$.

As $\alpha > 0$, the study done in [10] (specially in section 5.2) gives, on the one hand, that $E_3 = \emptyset$ (which can easily be conclude from Lemma 2.2, item 1) and, on the other hand, that either $E_1 = \emptyset$ and $E_2 =] - \infty, 0]$, or there exist $c^* \le 0$ such that $E_1 = [c^*, 0]$ and $C_2 =] - \infty, c^*[$.

$$E_{2,1} = \{ c \in E_2 : \varphi'_c > 0 \text{ on } [0, I_c[\} \}$$

 $E_{2,2} = \{ c \in E_2 : \exists x_c \in]0, I_c[\text{ such that } \varphi'_c > 0 \text{ on } [0, x_c[\text{ and } \varphi'_c(x_c) = 0 \} \}$

In the following, we give some characteristics of each of these subsets that hold for all $\alpha \in]0,1]$.

Lemma 3.1. If $c \in \mathbb{R}$ where $\varphi'_c > 0$ on $[0, I_c[$, then $I_c = +\infty$ and φ'_c is bounded. In addition, if $c \le 0$, then $\varphi'_c \le max\{b, \sqrt{3}\}$ on $[0, +\infty[$.

Proof: We consider $c \in \mathbb{R}$ such that $\varphi'_c > 0$ on $[0, I_c[$, then $\varphi_c \ge a \ge 0$ on $[0, I_c[$ and thanks to Lemma 2.5, it follows that $I_c = +\infty$ and φ'_c is bounded.

It stay to prove that $\varphi'_c \le max\{b, \sqrt{3}\}$ in the case where $c \le 0$. As in (4), we define the function G_c on $[0, +\infty[$ by

$$G_c(t) = 3\varphi_c''(t)^2 + \alpha \,\varphi_c'(t)(2 \,\varphi_c'(t)^2 - 6)$$

and, as $\varphi_c \ge 0$, it means that G_c is nonincreasing.

If $\varphi_c'' \leq 0$ on $]0, +\infty[$, then $\varphi_c' \leq b$. Contrary, there exists t_0 such that $\varphi_c'' < 0$ on $]0, t_0[$ and $\varphi_c''(t_0) = 0$. By Lemma 2.2 item 3, it implies that $\varphi_c' < 1$, and consequently $G_c(t_0) < 0$. Then, $G_c < 0$ on $]t_0, +\infty[$ which implies that $\varphi_c' \leq \sqrt{3}$ on $]t_0, +\infty[$. As $\varphi_c' \leq b$ on $]0, t_0[$, the proof is complete.

Proposition 3.2. We put $c^* = inf (E_1 \cup E_{2,1})$. Then c^* is finite.

Proof: We suppose $c \in E_1 \cup E_{2,1}$. By definition of E_1 and $E_{2,1}$, and thanks to lemma 3.1, we get $I_c = +\infty$ and $0 < \varphi'_c < d$ on $[0, +\infty[$ such that $d = max\{b, \sqrt{3}\}$. As

$$(\varphi_c^{\prime\prime} + \varphi_c \varphi_c^{\prime})^{\prime} = \varphi_c^{\prime\prime\prime} + \varphi_c \varphi_c^{\prime\prime} + \varphi_c^{\prime^2}$$
$$= -\alpha (\varphi_c^{\prime^2} - 1) + \varphi_c^{\prime^2}$$
$$= -\alpha \varphi_c^{\prime^2} + \alpha + \varphi_c^{\prime^2}$$
$$\leq \alpha + d^2$$

By integrating, we get

$$\forall t \ge 0, \ f_c''(t) + f_c(t)f_c'(t) \le c + ab + (\beta + d^2)t.$$

We integrate once again, for all $t \ge 0$, we obtain

$$0 < \varphi_c'(t) \le \varphi_c'(t) + \frac{1}{2}\varphi_c^2(t) \le b + \frac{1}{2}a^2 + (c+ab) + \frac{1}{2}(\alpha+d^2)t^2$$

Then we have

$$c \ge -ab - \sqrt{(2b + a^2)(\alpha + d^2)}.$$

Remark 3.3. If $C_1 \neq \emptyset$, then $E_1 = [c^*, 0]$ and moreover $E_{2,1} \subset [c_*, c^*[$.

www.josa.ro

4. THE CASE $\alpha \in \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, 1 [AND $b \ge 1$]

In this part we impose that $\alpha \in [\frac{1}{2}, 1[, \alpha \ge \sqrt{\frac{1}{1-\alpha}} \text{ and } b \ge 1.$

Proposition 4.1. If c > 0, then $T_c = +\infty$. Moreover, $\varphi'(t) \to 1$ as $t \to +\infty$.

Proof: From Lemma 2.6, there exists $t_0 \in]0, I_c[$ such that $\varphi_c'' > 0$ on $[0, t_0[$ and $\varphi_c''(t_0) = 0$. As $\varphi_c(t_0) > \sqrt{\frac{1}{1-\alpha}}$ and $\varphi_c'(t_0) > b > 1$. In consequence

$$\alpha \varphi_c(t_0)(1-\varphi_c'(t_0)) \le \varphi_c''(t_0) = 0.$$

The conclusion follows from Lemma 2.7.

Remark 4.2. Thanks to the preceding proposition, we note that φ_c is a convex-concave solution of $(P_{\alpha;a,b,1})$ for all c > 0.

Proposition 4.3. There exists $c^* \leq -\alpha a(b-1)$ such that $E_1 = [c^*, 0]$.

Proof: If b = 1, then $E_1 = \{0\}$.

If b > 1 on the one hand, from Lemma 2.7 with $t_0 = 0$ (or Lemma 5.12 of [10]), it follows that $[-\alpha a(b-1),0] \subset E_1$. On the other hand, Lemma 5.12 of [10] implies that E_2 is an interval of the type $] -\infty$, $c^*[$. This complete the proof since $E_1 =] -\infty$, $0] \setminus E_2$.

Remark 4.4. From the preceding proposition, we have that $0 \notin E_2$.

Proposition 4.5. If $c \in E_{2,1}$, then $I_c = +\infty$ and $\varphi'_c(t) \to 1$ as $t \to +\infty$.

Proof: Let $c \in E_{2,1}$. By Proposition 4.3, we have c < 0.

We impose that $\varphi_c'' < 0$ on $]0, I_c[$. Then φ_c' is decreasing and $0 < \varphi_c' \le b$. From Lemma 2.3 and Lemma 2.4 we get that $I_c = +\infty$ and also φ_c' has a limit γ at infinity such that $\gamma \in \{-1,1\}$. By definition of the set $E_{2,1}$ we obtain

 $\exists t_c \in [0, +\infty]$ such that $\varphi'_c(t_c) = 1$

Also we have φ_c'' vanishes on $]0, I_c[$, let t_0 be the first point where φ_c'' vanishes. Thanks to Lemma 2.2 item 3, we have $0 < \varphi_c'(t_0) \le 1$, and the conclusion follows from Lemma 2.8.

Remark 4.6. If $c \in E_{2,1}$ then φ_c is a concave-convex solution of $(P_{\alpha;a,b,1})$.

Theorem 4.7. We consider $\alpha \in [\frac{1}{2}, 1[, a \ge \sqrt{\frac{1}{1-\alpha}} \text{ and } b \ge 1$. There exists $c_* < 0$ where:

1) φ_c is a solution of $(P_{\alpha;a,b,1})$ for all $c \in]c_*, +\infty[$. Moreover, there exists $c^* \in [c_*, -\alpha \ a(b-1)];$

- 2) φ_c is a convex-concave solution of $(P_{\alpha;a,b,1})$ for all $c \in]0, +\infty[;$
- 3) φ_{c} is a concave solution of $(P_{\alpha;a,b,1})$; for all $c \in [c^*, 0]$;
- 4) φ_c is a concave-convex solution of $(P_{\alpha;a,b,1})$ for all $c \in]c_*, c^*[;$

5) φ_c is a concave-convex-concave solution of $(P_{\alpha;a,b,1})$ for all $c \in]c_*, c^*[$.

Proof: All these results follow from the Lemmas 2.1, 2.7, 2.8 and 2.9, and the Propositions 4.1, 4.3 and 4.5.

5. THE CASE $\alpha \in]0, \frac{1}{2}]$ AND -1 < b < 1

We consider $\alpha \in]0, \frac{1}{2}]$, $a \ge 0$ and -1 < b < 1. In this case, we divide \mathbb{R} into four sets $E'_{0,1}, E'_{0,2}, E'_1$ and E'_2 such that

$$E'_{0,1} = \{ c < 0; \phi'_c > -1 \text{ on } [0, I_c] \}$$

 $E'_{0,2} = \{ c < 0: \exists x_c \in]0, I_c [such that \phi'_c > -1 on [0, x_c [and \phi'_c (x_c) = -1 \} \}$

 $E'_1 = \{ c \ge 0; b \le \phi'_c \le 1 \text{ and } \phi''_c \ge 0 \text{ on } [0, I_c [\} \}$

 $E_2'=\{c\geq 0; \ \exists \ z_c\in [0,I_c[,\exists \ \delta_c>0 \ \text{such that} \ \phi_c'>1 \ \text{ on }]0,z_c[,$

 $\phi_c' > 1 \text{ on }]z_c, z_c + \delta_c[\text{ and } \phi_c'' > 0 \text{ on } [0, z_c + \delta_c[]$

The proofs employed in the preceding section, can be employed here. First, as $\rho(x) = \alpha(x^2 - 1) < 0$ for $x \in [-1, b]$ such that $b \in [-1, 0[$, the function ρ is nonincreasing on [-1, b], it follows from Theorem 5.5 of [10] that there exists a unique c_* where φ_{c_*} is a concave solution of $(P_{\alpha;a,b,-1})$. In addition, we have $c_* < 0$. As in the preceding section, this means that $E'_{0,2} = [-\infty, c_*[$. Moreover $E'_{0,1} = [c_*, 0[$, and if $c \in]c_*, 0[$, then φ''_c vanishes at a first point where $\varphi'_c < 1$.

After, in the same manner as in the proof of Proposition 3.2, we prove that $c^* = infE_1'$ is finite, and moreover that $E_1' = [0, c^*]$ and $E_2' =]c^*, +\infty[$. Hence, from Proposition 4.3, we get $c^* \leq -\alpha \ a(b-1)$. On the other hand, it follows from Lemma 2.6 that, if $c \in E_2'$, then φ_c'' vanishes at a first point where $\varphi_c' > 1$.

All this, mixed with an appropriate employ of Lemmas 2.7, 2.8 and 2.9 permit to make the following theorem.

Theorem 4.7. We consider $\alpha \in \left[0, \frac{1}{2}\right]$, $a \ge 0$ and -1 < b < 1. There exists $c_* < 0$ and $c^* \ge a(1-b)$ where:

1) φ_c is a concave solution of $(P_{\alpha;a,b,-1})$; if $b \in]-1, 0[;$

2) φ_c is a concave-convex solution of $(P_{\alpha;a,b,1})$ for all $c \in]c_*, 0[;$

3) φ_c is a concave-convex-concave solution of $(P_{\alpha;a,b,1})$ for all $c \in]c_*$, 0[;

4) φ_c is a convex solution of $(P_{\alpha;a,b,1})$ for all $c \in [0, c^*]$;

5) φ_c is a convex-concave solution of $(P_{\alpha;a,b,1})$ for all $c \in]c^*, +\infty[$.

6. CONCLUSIONS

In this work we have presented a set of new and important results for a problem arises when looking for similarity solutions to problem of boundary-layertheory. We studied the existence, uniqueness and the sign of concave, convex, convex-concave, concave- convex, concave-convex-concave and convex-concave-convex solutions to the autonomous third order nonlinear differential equation $\varphi''' + \varphi \varphi'' + \alpha (\varphi'^2 - 1) = 0$, where $0 < \alpha < 1$ and ρ is a given continuous function. Associated with the above equation, we have the following boundary conditions $\varphi(0) = a \ge \sqrt{\frac{1}{1-\alpha}}, \varphi'(0) = b \ge 0$ and $\varphi'(+\infty) = \gamma \in \{-1,1\}$, we use shooting technique and consider the initial conditions $\varphi(0) = a, \varphi'(0) = b$ and $\varphi''(0) = c$ where a, b and $c \in \mathbb{R}$ we prove that there exists an infinitely many solutions such that $\varphi'(+\infty) = 1$.

REFERENCES

- [1] Hartree, D.R., *Mathematica Proceedings of the Cambridge Philosophical Society*, **33**(2), 223, 1973.
- [2] Weyl, H., Annals of Mathematics, **43**(2), 381, 1942.
- [3] Coppel, W.A., Mathematical and Physical Sciences, 253(1023), 101, 1960.
- [4] Hartman, P., Ordinary Differential Equations, JohnWiley& Sons, New York, NY, USA, 1964.
- [5] Yang, G.C., Applied Mathematics Letters, 17, 1261, 2004.
- [6] Aiboudi, M., Labbaoui, F., *International Journal of Analysis and Application*, **18**(3), 409, 2020.
- [7] Brighi, B., Fruchard, A., Sari, T., *Advances in Differential Equations*, **13**(5-6), 509, 2008.
- [8] Aiboudi, M., Brighi, B., Archiv der Mathematik, 93(2), 165, 2009.
- [9] Aiboudi, M., Boudjema Djeffa, K., Brighi, B., *Abstract and Applied Analysis*, **2018**, 4340204, 2018.
- [10] Brighi, B., Results in Mathematics, 61(3-4), 355, 2012.