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Abstract. The differential equation 𝜑′′′ + 𝜑𝜑′′ + 𝛼 (𝜑′
2
− 1) = 0 where 𝛼 > 0 is 

appeared for studying the boundary layer flow past a semi infinitewedge. As a means to prove 

the existence of solutions verifying (0) = 𝑎 ≥ √
1

1−𝛼
 ,  𝜑′(0) = 𝑏 ≥ 0  and 𝜑′(𝑡) → 1 𝑜𝑟 −

1 𝑎𝑠 𝑡 → +∞  for 0 < 𝛼 < 1. We utilize shooting technique and consider the initial 

conditions 𝜑 (0)  = 𝑎, 𝜑′(0)  = 𝑏 and 𝜑’’ (0) = 𝑐. We demonstrate that there exists an 

infinitely many solutions where 𝜑′(+∞)  = 1. 
Keywords: third ordernonlinear differential equation; boundary layer; convex 

solution; shooting technique; concave solution; convex-concave solution. 

 

 

1. INTRODUCTION  

 

 

The third order autonomous nonlinear differential equation 
 

𝜑′′′ + 𝜑𝜑′′ + 𝛼 (𝜑′2 − 1)  = 0 (1)  

 

is introduced in 1931 by Falkner and Skan for studying the boundary layer flow past a semi 

infinite wedge and for this reason is called the Falkner-Skan equation. Many authors as in   

[1-6] have studied the solutions of this equation. 

The general equation of (1) is 
 

𝜑′′′ + 𝜑𝜑′′ + 𝜌 (𝜑)  = 0 (2)  

 

where 𝜌:ℝ → ℝ is some function. The Blasius equation is the most famous example, with 

𝜌(𝑥) = 0 and arises in the study of laminar boundary layer on a flat plate (see [7]). 

Newly, the equation (2) with 𝑔(𝑥) = 𝛽𝑥2and 𝑔(𝑥) = 𝛽𝑥(𝑥 − 1) has been considered, 

for example, in the study of free convection and of mixed convection boundary layer flows 

over a vertical surface embedded in a porous medium (see [8, 9]). 

Usually, to solve the boundary value problem(𝑃𝛼;𝑎,𝑏,𝛾)  where: 
 

(𝑃𝛼;𝑎,𝑏,𝛾)

{
 
 

 
 φ′′′ + φφ′′ + α (φ′

2 − 1)  = 0  ,

𝜑(0) = 𝑎,

𝜑′(0) = 𝑏,

lim
𝑡→+∞

𝜑′(𝑡) = 𝛾 .
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We will use the shooting technique. We denote  𝜑𝑐 the solution of the initial value 

problem 𝑃𝑖 (𝑎, 𝑏, 𝑐) consisting in the equation (1) with the initial conditions 𝜑(0) = 𝑎,
𝜑′(0) = 𝑏 and 𝜑′′(0) = 𝑐. We consider [0, 𝐼𝑐) the right maximal interval of existence of 𝜑𝑐. 

To get a solution of (𝑃𝛼;𝑎,𝑏,𝛾) equivalent to find a value of c where 𝐼𝑐 = +∞ and 𝜑′
𝑐
(𝑡) → 𝛾 

as 𝑡 → +∞. 
For condition of 𝛾 one prove that if 𝛾 is constant then (𝛾2 − 1) = 0. To have 

solutions, in our case of Falkner-Skan equation, the only relevant conditions are 𝜑′(𝑡) → −1 

or 𝜑′(𝑡) → 1 as t → +∞. 

In this work, we will study the existence of concave, convex, concave-convex, 

convex-concave, concave-convex-concave and convex-concave-convex solutions to the 

boundary value problem (𝑃𝛼;𝑎,𝑏,−1) and (𝑃𝛼;𝑎,𝑏,1)  for  0 < 𝛼 < 1, a ≥ √
1

1−α
  and b ≥ 0. 

 

 

2. PRELIMINARY RESULTS 

 

 

We consider 𝜑 as a solution to the equation (1) on some interval 𝐽, let 𝐾𝜑: 𝐽 → ℝ be 

the function defined by 

 

𝐾𝜑 = [𝜑
′′ + 𝛼𝜑(𝜑′ − 1)]𝑒𝑥𝑝(1−𝛼)𝐹 . (3)  

 

where 𝐹 denote any primitive function of 𝜑. This function is got by integrating the equation 

(1). In fact, if 𝜑 is a solution of (1) then 

 

𝐾𝜑
′ = [𝛼(𝜑′ − 1)((1 − 𝛼)𝜑2 − 1)]𝑒𝑥𝑝(1−𝛼)𝐹 . 

 

In the following, we put lemmas that will be useful later. 

 

Lemma 2.1. We consider 𝜑 as a solution to (1) on some maximal interval 𝐽. If there exists 

𝑡0 ∈ 𝐽 such that 𝜑′(𝑡0) ∈ {−1, 1} and  𝜑′′(𝑡0) = 0, then 𝐽 = ℝ  and  𝜑′′(𝑡) = 0 for all 𝑡 ∈ ℝ. 

 

Proof: Cf [10]. Proposition 3.1 item 3. 

 

Lemma 2.2. We consider 𝛼 > 0 and 𝜑 be a solution to equation (1) on some interval 𝐽, such 

that 𝜑′is not constant. 

1) If there exists 𝑥 < 𝑦 ∈ 𝐽 such that 𝜑′′(𝑥) ≤ 0 and (𝜑′
2
− 1) > 0 on ]𝑥, 𝑦[, then 

𝜑′′(𝑡) < 0 for all 𝑡 ∈]𝑥, 𝑦]. 

2) If there exists 𝑥 < 𝑦 ∈ 𝐽 such that 𝜑′′(𝑥) ≥ 0 and (𝜑′
2
− 1) < 0 on ]𝑥, 𝑦[, then 

𝜑′′(𝑡) > 0 for all 𝑡 ∈]𝑥, 𝑦]. 
3) If there exists 𝑥 < 𝑦 ∈ 𝐽 such that 𝜑′′ < 0 on ]𝑥, 𝑦[ and 𝜑′′(𝑦) = 0, then 

(𝜑′
2
(𝑦) − 1) < 0. 

4) If there exists 𝑥 < 𝑦 ∈ 𝐽 such that 𝜑′′ > 0 on ]𝑥, 𝑦[ and 𝜑′′(𝑦) = 0, then 

(𝜑′
2
(𝑦) − 1) > 0. 

 

Proof: We consider 𝐹 as a primitive function of 𝜑. From (1) we deduce the relation 

 

(𝜑′′𝑒𝑥𝑝𝐹)′ = −𝛼(𝜑′
2
− 1)𝑒𝑥𝑝𝐹. 
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The assertions 1-4 obtain easily from this relation and from preceding lemma. We 

verify the first and the third of these assertions. For the first one, as 𝜓 = 𝜑′′𝑒𝑥𝑝𝐹 is 

decreasing on [𝑥, 𝑦], we get 

 

𝑡  ≥  𝑥 ⇒ 𝜓(𝑡) ≤ 𝜓(𝑥) 
 

⇒  𝜑′′(𝑡)𝑒𝑥𝑝𝐹(𝑡) ≤ 𝜑′′(𝑠)𝑒𝑥𝑝𝐹(𝑥) 
 

⇒  𝜑′′(𝑡) ≤ 𝜑′′(𝑥)𝑒𝑥𝑝(𝐹(𝑥) − 𝐹(𝑡)) 
 

⇒  𝜑′′(𝑡) ≤ 0, ∀𝑡 ∈]𝑥, 𝑦]. 
 

For the third one, as 𝜓 < 0 on ]𝑥, 𝑦[ and 𝜓(𝑦) = 0, then 𝜓′(𝑦) ≥ 0. 

 

𝜓′(𝑦) = −𝛼(𝜑′
2
(𝑦) − 1)𝑒𝑥𝑝𝐹 ≥ 0. 

 

This and Lemma 2.1 imply that (𝜑′
2
(𝑦) − 1) < 0. 

 

Lemma 2.3. We consider 𝜑 as a solution to (1) on some maximal interval ]𝐼₋, 𝐼₊[. If  𝐼₊ is 

finite, then 𝜑′ and 𝜑′′ are unbounded in any neighborhood of 𝐼₊. 
 

Proof: According [10], Proposition 3.1 item 6. 

 

Lemma 2.4. We put 𝛼 ≠ 0. If 𝜑 is a solution of (1) on some interval ]𝜂, +∞[ such that 

𝜑′(𝑡) → 𝛾 as 𝑡 → +∞, then 𝛾 ∈ {−1, 1}. In addition, if 𝜑 is of constant sign at infinity, then 

𝜑′′(𝑡) → 0 as 𝑡 → +∞. 

 

Proof: According [10], Proposition 3.1 item 4 and 5. 

 

Lemma 2.5. We put 𝛼 > 0 and we consider 𝜑 as a solution to (1) on some right maximal 

interval 𝐽 = [𝜂, +∞[. If 𝜑 ≥ 0 and 𝜑′ ≥ 0 on 𝐽, then  𝐼₊ = +∞ and 𝜑′ is bounded on  𝐽. 
 

Proof: We put 𝐺 = 𝐺𝜑  the function defined on 𝐽 by 

 

𝐺(𝑡) = 3𝜑′′(𝑡)2 + 𝛼𝜑′(𝑡)(2𝜑′
2(𝑡) − 6) (4)  

 

Using (1), simply we get that 

 

𝐺′(𝑡) = −6𝜑(𝑡)𝜑′′(𝑡)²      ∀𝑡 ∈ 𝐽 
 

and, as 𝜑 ≥ 0 on 𝐽 this implies that 𝐺 is decreasing. Therefore 

 

∀𝑡 ∈ 𝐽 = [𝜂, 𝐼₊[: 𝑡 > 𝜂 ⇒ 𝐺(𝑡) ≤ 𝐺(𝜂) 

𝛼𝜑′(𝑡)(2𝜑′(𝑡)² − 6) ≤ 3𝜑′′(𝑡)² + 𝛼𝜑′(𝑡)(2𝜑′
2(𝑡) − 6) ≤ 𝐺(𝜂), ∀𝑡 ∈ 𝐽 

 
It follows that 𝜑′ is bounded on 𝐽 and thanks to lemma 2.3 that  𝐼₊ = +∞. 

 

Lemma 2.6. We put 𝛼 > 0 and we consider 𝜑 as a solution to (1) on some right maximal 

interval 𝐽 = [𝜂, 𝐼₊[. If 𝜑(𝜂) ≥ 0, 𝜑′(𝜂) ≥ 1 and 𝜑′′(𝜂) > 0, then there exists 𝑡₀ ∈]𝜂, 𝐼₊[ 
where 𝜑′′ > 0 on [𝜂, 𝑡₀[  and  𝜑′′(𝑡₀) = 0. 
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Proof: Suppose for contradiction that  𝜑′′ > 0 on 𝐽. Then 𝜑(𝑡) ≥ 0, 𝜑′(𝑡) ≥ 1 for all 𝑡 ∈ 𝐽.  
Then we get 

𝜑′′′ = −𝜑𝜑′′ − 𝛼(𝜑′
2
− 1) ≤ 0 (5)  

 

It follows that 0 <  𝜑′′(𝑡) ≤ 𝑐 for all 𝑡 ∈ 𝐽 and therefore, by Lemma 2.4, we get𝐼₊ =
+∞. After, we put 𝑥 > 𝜂 and 𝜖 = 𝛼(𝜑′(𝑥)² − 1). One has 𝜖 > 0 and, come again to (5), we 

get 

𝜑′′′ ≤ −𝜖 on [𝑥, +∞[. 
 

By integrating, we obtain 

 

∀𝑡 ≥ 𝑥, 𝜑′′(𝑡) − 𝜑′′(𝑥) ≤ −𝜖(𝑡 − 𝑥) 
 

and a contradiction with the fact that 𝜑′′(𝑡) > 0.Therefore, there exists 𝑡₀ ∈]𝜂, 𝐼₊[ where 

𝜑′′ > 0 on [𝜂, 𝑡₀[  and  𝜑′′(𝑡₀) = 0. 

 

Lemma 2.7. We put 𝛼 ∈ [1
2
, 1[ and we consider 𝜑 as a solution to (1) on some right maximal 

interval 𝐽 =]𝐼₋, 𝐼₊[. If there exists 𝑡₀ ∈ 𝐽 where  𝜑(𝑡₀) > √ 1

1−𝛼
 , 𝜑′(𝑡₀) > 1 and 

 

𝛼𝜑(𝑡₀)(1 − 𝜑′(𝑡₀)) ≤ 𝜑′′(𝑡₀) ≤ 0. 

 

Then 𝐼₊ = +∞ and 𝜑′(𝑡) → 1 as 𝑡 → +∞. In addition 𝜑′′ ≤ 0 on  [𝑡₀, +∞[ . 
 

Proof: We put 𝜇 = sup 𝑆(𝑡₀), such that 

 

𝑆(𝑡₀) = {𝑡 ∈]𝑡₀, 𝐼₊[: 1 < 𝜑′ < 𝜑′(𝑡₀) and 𝜑′′ < 0 on ]𝑡₀, 𝑡[} 
 

The set 𝑆(𝑡₀) is not empty. This is clear if 𝜑′′(𝑡₀) < 0, and if 𝜑′′(𝑡₀) = 0 it follows 

from the fact that 

𝜑′′′(𝑡₀) = −𝛼(𝜑′
2
(𝑡₀) − 1) < 0 

 

We stay to prove that 𝜇 = 𝐼₊, suppose for contradiction that  𝜇 < 𝑇₊. From Lemma 

2.2, item 1, we obtain that 𝜑′′(𝜇) < 0, which implies, by definition of  𝜇, that 𝜑′(𝜇) = 1. 

Hence, as the function 𝐾𝑓 defined by (3) is increasing on [𝑡₀, 𝜇], we get 

 

𝜇 ≥  𝑡₀ ⇒  𝐾𝜑(𝜇) ≥  𝐾𝜑(𝑡₀) 

 
⇒  𝜑′′(𝜇)𝑒𝑥𝑝(1 − 𝛼)𝐹(𝜇) ≥ [𝜑′′(𝑡₀) − 𝛼𝜑(𝑡₀)(1 − 𝜑′(𝑡₀))]𝑒𝑥𝑝(1 − 𝛼)𝐹(𝜇) ≥ 0 

 
⇒  𝜑′′(𝜇) ≥ 0. 

 

a contradiction. In consequence, we have 𝜇 = 𝐼₊. From Lemma 2.3, it follows that I₊ = +∞. 

As 𝜑′′ < 0 on [𝑡₀, +∞[ , by vertue of Lemma 2.4, we obtain that 𝜑′(𝑡) → 1 as 𝑡 → +∞. 
 

Lemma 2.8. We consider 𝛼 ∈ [1
2
, 1[ and 𝜑 a solution to equation (1) on some right maximal 

interval 𝐽 =]𝐼₋, 𝐼₊[. If there exists 𝑡₀ ∈ 𝐽 such that 𝜑(𝑡₀) > √ 1

1−𝛼
 , 0 < 𝜑′(𝑡0) < 1 and 

 

0 ≤ 𝜑′′(𝑡₀) ≤ 𝛼𝜑(𝑡₀)(1 − 𝜑′(𝑡₀)). 
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Then 𝐼₊ = +∞ and 𝜑′(𝑡) → 1 as 𝑡 → +∞. In addition 𝜑′′ ≥ 0 on [𝑡₀, +∞[. 
 

Proof: If we put 𝜆 = 𝑠𝑢𝑝𝑅(𝑡₀), with 

 

𝑅(𝑡₀) = {𝑡 ∈]𝑡₀, 𝐼₊[: 𝜑′(𝑡₀) < 𝜑′ < 1 and 𝜑′′ > 0 on ]𝑡₀, 𝑡[}. 
 

The set 𝑅(𝑡₀) is not empty. This is clear if 𝜑′′(𝑡₀) > 0, and if 𝜑′′(𝑡₀) = 0 it follows 

from the fact that 

𝜑′′′(𝑡₀) = −𝛼(𝜑′
2
(𝑡₀) − 1) > 0. 

 

We claim that 𝜆 = 𝐼₊, suppose for contradiction that 𝜆 < 𝐼₊. From Lemma 2.2, item 2, 

we obtain that 𝜑′′(𝜆) > 0, which implies, by definition of 𝜆, that 𝜑′(𝜆) = 1. Hence, as the 

function  𝐾𝜑 defined by (3) is decreasing on [𝑡₀, 𝜆], we get 

 

𝜆 ≥  𝑡₀ ⇒ 𝐾𝜑(𝜆) ≤ 𝐾𝜑(𝑡₀) 

 
⇒  𝜑′′(𝜆)𝑒𝑥𝑝(1 − 𝛼)𝐹(𝜆) ≤ [𝜑′′(𝑡₀) − 𝛼𝜑(𝑡₀)(1 − 𝜑′(𝑡₀))]𝑒𝑥𝑝(1 − 𝛼)𝐹(𝜆) ≤ 0 

 
⇒  𝜑′′(𝜆) ≤ 0. 

 

a contradiction. In consequence, we have  𝜆 = 𝐼₊. From Lemma 2.3, it follows that  𝐼₊ = +∞. 

As 𝜑′′ > 0 on [𝑡₀, +∞[ , by vertue of Lemma 2.4, we obtain that 𝜑′(𝑡) → 1 as 𝑡 → +∞. 

 

Lemma 2.9. We consider 𝛼 ∈ [1
2
, 1[ and 𝜑 a solution to equation (1) on some right maximal 

interval 𝐽 =]𝐼₋, 𝐼₊[. If  there exists 𝑡₀ ∈ 𝐽 such that 𝜑(𝑡₀) > √ 1

1−𝛼
 , 0 < 𝜑′(𝑡₀) < 1 and    

 

−𝛼𝜑(𝑡₀)𝜑′(𝑡₀) ≤ 𝜑′′(𝑡₀) ≤ 0, 
 

Then 𝐼₊ = +∞ and 𝜑′(𝑡) → 1 as 𝑡 → +∞. In addition there exist 𝜂 ≥ 𝑡₀ such that 

𝜑′′ ≤ 0 on [𝑡₀, 𝜂[ and 𝜑′′ ≥ 0 on [𝜂, +∞[. 
 

Proof: If 𝜑′′(𝑡₀) = 0, the conclusion follows from Lemma 2.8. 

 

If 𝜑′′(𝑡₀) < 0, we put 𝜃 = 𝑠𝑢𝑝 𝑇(𝑡₀) 
 

𝑇(𝑡₀) = {𝑡 ∈]𝑡₀, 𝐼₊[: 0 < 𝜑′ < 𝜑′(𝑡₀) and 𝜑′′ < 0 on ]𝑡₀, 𝑡[ } 
 

The set 𝑇(𝑡₀) is not empty. We claim that 𝜃 < 𝐼₊. Suppose for contradiction that 𝜃 =
𝐼₊. From Lemma 2.3, we get that 𝜃 = 𝐼₊ = +∞, 0 < 𝜑′ < 𝜑′(𝑡₀) and 𝜑′′ < 0 on ]0, +∞[. 
Then 𝜑𝑐

′  is decreasing, and consequently 𝜑𝑐
′  has a finite limite 𝛾 at infinity. By Lemma 2.4, 

we finally obtain that 𝛾 ∈ {−1,1} a contraduction. In consequence we have 𝜃 < 𝐼₊. 
By definition of 𝜃, that 𝜑′(𝜃) = 0 or 𝜑′′(𝜃) = 0. We claim that 𝜑′(𝜃) ≠ 0, suppose 

for contraduction that 𝜑′(𝜃) = 0, we consider the function 𝐿𝜑: [𝑡₀, 𝜃] → ℝ defined by 

 

𝐿𝜑 = (𝜑′′ + 𝛼𝜑𝜑′)𝑒𝑥𝑝(1 − 𝛼)𝐹, 

 

where𝐹 denote any primitive function of 𝜑, in fact, if 𝜑 is a solution of (1) then 

 

𝐿𝜑
′ = [((1 − 𝛼)𝜑²𝜑′ + 1)]𝑒𝑥𝑝(1 − 𝛼)𝐹. 
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The function 𝐿𝜑 is increasing on [𝑡₀, 𝜃], we get 

 

𝜃 ≥  𝑡₀ ⇒ 𝐿𝜑(𝜃) ≥ 𝐿𝜑(𝑡₀) 

 
⇒  𝜑′′(𝜃)𝑒𝑥𝑝(1 − 𝛼)𝐹(𝜃) ≥ [𝜑′′(𝑡₀) + 𝛼𝜑(𝑡₀)𝜑′(𝑡₀)]𝑒𝑥𝑝(1 − 𝛼)𝐹(𝜃) ≥ 0 

 
⇒  𝜑′′(𝜃) ≥ 0. 

 

A contradiction. Consequently, we have 𝜑′′(𝜃) = 0 and 0 < 𝜑′(𝜃) < 1. From Lemma 

2.8 it follows that 𝐼₊ = +∞ and 𝜑′(𝑡) → 1 as 𝑡 → +∞. 

 

 

3. DESCRIPTION  OF  OUR  APPROACH  WHEN  𝒃 ≥ 𝟏 
 

 

We consider 𝛼 > 0, 𝑎 ≥ √ 1

1−𝛼
 and 𝑏 ≥ 1.The method we will use to obtain solutions 

of the boundary value problems (𝑃𝛼;𝑎,𝑏,−1) and (𝑃𝛼;𝑎,𝑏,1) is the shooting technique. 

Specifically, for 𝑐 ∈ ℝ, we denote by 𝜑𝑐 the solution of equation (1) verifying the initial 

conditions 

 

𝜑𝑐(0) = 𝑎, 𝜑𝑐
′(0) = 𝑏  and  𝜑𝑐

′′(0) = 𝑐 (6)  

 

and we consider [0, 𝐼𝑐[ the right maximal interval of existence of 𝜑𝑐. Therefore, finding a 

solution of one of the problems (𝑃𝛼;𝑎,𝑏,−1) and (𝑃𝛼;𝑎,𝑏,1) amounts to finding a value of 

𝑐 where 𝐼+ = +∞ and 𝜑′(𝑡) → −1 or 1 as 𝑡 → +∞. 

We divide  ℝ  into the four sets 𝐸₀, 𝐸₁, 𝐸₂ and 𝐸₃ defined as follows. We put 

 

𝐸₀ =]0,+∞[ . 
 

𝐸₁ = {𝑐 ≤ 0;  1 ≤ 𝜑𝑐
′ ≤ 𝑏 and 𝜑𝑐

′′ ≤ 0 on [0, 𝐼𝑐[}  . 
 

𝐸₂ = {𝑐 ≤ 0; ∃ 𝑧𝑐 ∈ [0, 𝐼𝑐[, ∃ 𝛿𝑐 > 0 such that 𝜑𝑐
′ > 1  on ]0, 𝑧𝑐[, 

 

𝜑𝑐
′ < 1 on ]𝑧𝑐 , 𝑧𝑐 + 𝛿𝑐[ and 𝜑𝑐

′′ ≤ 0 on [0, 𝑧𝑐 + 𝛿𝑐[} . 
 

and             

𝐸₃ = {𝑐 ≤ 0; ∃ 𝑦𝑐 ∈ [0, 𝐼𝑐[, ∃ 𝜎𝑐 > 0 such that𝜑𝑐
′′ < 0 on ]0, 𝑦𝑐[ 

 

𝜑𝑐
′′ > 0 on ]𝑦𝑐 , 𝑦𝑐 + 𝛿𝑐[ and𝜑𝑐

′ > 1  on ]0, 𝑦𝑐 + 𝜎𝑐[}. 
 

This is evident that 𝐸₀, 𝐸₁, 𝐸₂ and 𝐸₃ are disjoint sets and that their union is the whole 

line of real numbers. Thanks to Lemma 2.3 and 2.4 if 𝑐 ∈ 𝐸₁ then 𝐼₊ = +∞ and 𝜑𝑐
′(𝑡) →

1 as 𝑡 → +∞. In fact, 𝐸₁ is the set of values of c for which 𝜑𝑐 is a concave solution of 

(𝑃𝛼;𝑎,𝑏,1). 

As 𝛼 > 0, the study done in [10] (specialy in section 5.2) gives, on the one hand, that 

𝐸₃ = ∅ (which can easily be conclude from Lemma 2.2, item 1) and, on the other hand, that 

either 𝐸₁ = ∅ and 𝐸₂ =] − ∞, 0], or there exist 𝑐∗ ≤ 0 such that 𝐸₁ = [𝑐∗, 0] and 𝐶₂ =] −
∞, 𝑐∗[. 
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For the purpose of completing the stady, we divide the set 𝐸₂ into the following two 

subsets 

𝐸2,1 = {𝑐 ∈ 𝐸₂: 𝜑𝑐
′ > 0 on [0, 𝐼𝑐[} 

 

𝐸2,2 = {𝑐 ∈ 𝐸₂: ∃ 𝑥𝑐 ∈]0, 𝐼𝑐[ such that 𝜑𝑐
′ > 0 𝑜𝑛 [0, 𝑥𝑐[ and 𝜑𝑐

′(𝑥𝑐) = 0} 
 

In the following, we give some characteristics of each of these subsets that hold for all 

𝛼 ∈]0,1]. 
 

Lemma 3.1. If 𝑐 ∈ ℝ  where 𝜑𝑐
′ > 0 on  [0, 𝐼𝑐[, then 𝐼𝑐 = +∞ and 𝜑𝑐

′  is bounded.   

In addition, if 𝑐 ≤ 0, then 𝜑𝑐
′ ≤ 𝑚𝑎𝑥{𝑏, √3} on [0, +∞[. 

 

Proof: We consider 𝑐 ∈ ℝ such that 𝜑𝑐
′ > 0 on [0, 𝐼𝑐[, then 𝜑𝑐 ≥ 𝑎 ≥ 0 on [0, 𝐼𝑐[ and thanks 

to Lemma 2.5, it follows that 𝐼𝑐 = +∞ and 𝜑𝑐
′  is bounded. 

It stay to prove that 𝜑𝑐
′ ≤ 𝑚𝑎𝑥{𝑏, √3} in the case where 𝑐 ≤ 0. As in (4), we define 

the function 𝐺𝑐 on [0, +∞[ by 

 

𝐺𝑐(𝑡) = 3𝜑𝑐
′′(𝑡)² + 𝛼 𝜑𝑐

′(𝑡)(2 𝜑𝑐
′(𝑡)² − 6) 

 

and,  as  𝜑𝑐 ≥ 0, it means that 𝐺𝑐 is nonincreasing. 

If 𝜑𝑐
′′ ≤ 0 on ]0, +∞[, then 𝜑𝑐

′ ≤ 𝑏. Contrary, there exists 𝑡₀ such that 𝜑𝑐
′′ < 0 on 

]0, 𝑡₀[  and 𝜑𝑐
′′(𝑡₀) = 0. By Lemma 2.2 item 3, it implies that 𝜑𝑐

′ < 1, and 

consequently 𝐺𝑐(𝑡₀) < 0. Then, 𝐺𝑐 < 0 on ]𝑡₀, +∞[ which implies that 𝜑𝑐
′ ≤ √3 on ]𝑡₀, +∞[. 

As 𝜑𝑐
′ ≤ 𝑏 on ]0, 𝑡₀[, the proof is complete. 

 

Proposition 3.2. We put 𝑐∗ = 𝑖𝑛𝑓 (𝐸₁ ∪ 𝐸2,1). Then 𝑐∗ is finite. 

 

Proof: We suppose 𝑐 ∈ 𝐸₁ ∪ 𝐸2,1. By definition of 𝐸₁and 𝐸2,1, and thanks to lemma 3.1, we 

get 𝐼𝑐 = +∞ and 0 < 𝜑𝑐
′ < 𝑑 on [0, +∞[such that 𝑑 = 𝑚𝑎𝑥{𝑏, √3}. As 

 

(𝜑𝑐
′′ + 𝜑𝑐𝜑𝑐

′)′ = 𝜑𝑐
′′′ + 𝜑𝑐𝜑𝑐

′′ + 𝜑𝑐
′2 

 

= −𝛼(𝜑𝑐
′2 − 1) + 𝜑𝑐

′2  

=  −𝛼𝜑𝑐
′2 + 𝛼 + 𝜑𝑐

′2 

≤ 𝛼 + 𝑑² 
By integrating, we get 

 

∀𝑡 ≥ 0, 𝑓𝑐
′′(𝑡) + 𝑓𝑐(𝑡)𝑓𝑐

′(𝑡) ≤ 𝑐 + 𝑎𝑏 + (𝛽 + 𝑑²)𝑡. 
 

We integrate once again, for all 𝑡 ≥ 0, we obtain 

 

0 < 𝜑𝑐
′(𝑡) ≤ 𝜑𝑐

′(𝑡) +
1

2
𝜑𝑐
2(𝑡) ≤ 𝑏 +

1

2
𝑎2 + (𝑐 + 𝑎𝑏) +

1

2
(𝛼 + 𝑑2)𝑡2 

 

Then we have 

𝑐 ≥ −𝑎𝑏 − √(2𝑏 + 𝑎²)(𝛼 + 𝑑²). 

 

Remark 3.3. If 𝐶₁ ≠ ∅, then 𝐸₁ = [𝑐∗, 0] and moreover 𝐸2,1 ⊂ [𝑐∗, 𝑐
∗[. 
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4. THE CASE   𝜶 ∈ [𝟏
𝟐
, 𝟏[  AND 𝒃 ≥ 𝟏 

 

 

In this part we impose that 𝛼 ∈ [1
2
, 1[, 𝑎 ≥ √ 1

1−𝛼
  and 𝑏 ≥ 1. 

 

Proposition 4.1. If 𝑐 > 0, then 𝑇𝑐 = +∞. Moreover, 𝜑′(𝑡) → 1 as 𝑡 → +∞. 

 

Proof: From Lemma 2.6, there exists 𝑡₀ ∈]0, 𝐼𝑐[ such that 𝜑𝑐
′′ > 0 on [0, 𝑡₀[  and  𝜑𝑐

′′(𝑡₀) = 0. 

As 𝜑𝑐(𝑡₀) > √ 1

1−𝛼
 and 𝜑𝑐

′(𝑡₀) > 𝑏 > 1. In consequence 

 

𝛼𝜑𝑐(𝑡₀)(1 − 𝜑𝑐
′(𝑡₀)) ≤  𝜑𝑐

′′(𝑡₀) = 0. 

 

The conclusion follows from Lemma 2.7. 
 

Remark 4.2. Thanks to the preceding proposition, we note that 𝜑𝑐 is a convex-concave 

solution of (𝑃𝛼;𝑎,𝑏,1)for all 𝑐 > 0. 

 

Proposition 4.3. There exists 𝑐∗ ≤ −𝛼𝑎(𝑏 − 1) such that 𝐸₁ = [𝑐∗, 0]. 
 

Proof: If 𝑏 = 1, then 𝐸₁ = {0}. 
If 𝑏 > 1.on the one hand, from Lemma 2.7 with 𝑡₀ = 0 (or Lemma 5.12 of [10]), it 

follows that [−𝛼𝑎(𝑏 − 1),0] ⊂ 𝐸₁. On the other hand, Lemma 5.12 of [10] implies that 𝐸₂ is 

an interval of the type ] − ∞, 𝑐∗[. This complete the proof since 𝐸₁ =] − ∞, 0]\𝐸₂. 
 

Remark 4.4. From the preceding proposition, we have that 0 ∉ 𝐸₂. 
 

Proposition 4.5. If 𝑐 ∈ 𝐸2,1, then 𝐼𝑐 = +∞ and 𝜑𝑐
′(𝑡) →  1 as 𝑡 → +∞. 

 

Proof: Let 𝑐 ∈ 𝐸2,1. By Proposition 4.3, we have 𝑐 < 0. 

We impose that 𝜑𝑐
′′ < 0 on ]0, 𝐼𝑐[. Then 𝜑𝑐

′  is decreasing and 0 < 𝜑𝑐
′ ≤ 𝑏. From 

Lemma 2.3 and Lemma 2.4 we get that 𝐼𝑐 = +∞ and also 𝜑𝑐
′  has a limit 𝛾 at infinity such that 

𝛾 ∈ {−1,1}. By definition of the set 𝐸2,1 we obtain 

 

∃𝑡𝑐 ∈ [0, +∞[ such that 𝜑𝑐
′(𝑡𝑐) =1 

 

Also we have 𝜑𝑐
′′ vanishes on ]0, 𝐼𝑐[, let 𝑡₀ be the first point where 𝜑𝑐

′′ vanishes. 

Thanks to Lemma 2.2 item 3, we have 0 < 𝜑𝑐
′(𝑡₀) ≤ 1, and the conclusion follows from 

Lemma 2.8. 

 

Remark 4.6. If 𝑐 ∈ 𝐸2,1 then 𝜑𝑐 is a concave-convex solution of (𝑃𝛼;𝑎,𝑏,1). 
 

Theorem 4.7.We consider 𝛼 ∈ [1
2
, 1[, 𝑎 ≥ √ 1

1−𝛼
 and 𝑏 ≥ 1. There exists 𝑐∗ < 0 where: 

1) 𝜑𝑐 is a solution of (𝑃𝛼 ;𝑎,𝑏,1) for all 𝑐 ∈]𝑐∗, +∞[. Moreover, there exists 

𝑐∗ ∈ [𝑐∗, −𝛼 𝑎(𝑏 − 1)]; 

2) 𝜑𝑐 is a convex-concave solution of  (𝑃𝛼 ;𝑎,𝑏,1) for all 𝑐 ∈]0,+∞[; 

3) 𝜑 𝑐is a concave solution of (𝑃𝛼;𝑎,𝑏,1) ; for all 𝑐 ∈ [𝑐∗, 0]; 

4) 𝜑𝑐 is a concave-convex solution of  (𝑃𝛼 ;𝑎,𝑏,1) for all 𝑐 ∈]𝑐∗, 𝑐
∗[; 
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5) 𝜑𝑐  is a concave-convex-concave solution of  (𝑃𝛼;𝑎,𝑏,1)  for all 𝑐 ∈]𝑐∗, 𝑐
∗[. 

 

Proof: All these results follow from the Lemmas 2.1, 2.7, 2.8 and 2.9, and the Propositions 

4.1, 4.3 and 4.5.  

 

 

5. THE CASE   𝜶 ∈]𝟎,
𝟏

𝟐
]  AND  −𝟏 < 𝑏 < 1 

 

 

We consider 𝛼 ∈]0,
1

2
], 𝑎 ≥ 0 and −1 < 𝑏 < 1. In this case, we divide ℝ into four sets 

𝐸0,1
′ , 𝐸0,2

′ , 𝐸₁′ and 𝐸₂′ such that 

 

E0,1
′ ={ c < 0:  φc

′ >-1 on [0, Ic[ } 

 
E0,2

′ ={ c < 0:∃ xc∈]0, Ic [ such that φc
′ >-1 on [0, xc[ and φc

′  (xc)=-1} 

 

E1
′={ c ≥ 0; b ≤ φc

′ ≤ 1 and φc
′′≥ 0 on [0, Ic [} 

 
E2
′ = {c ≥ 0; ∃ zc ∈ [0, Ic[, ∃ δc > 0 such that φc

′ > 1  on ]0, zc[, 
 

φc
′ > 1 on ]zc, zc + δc[ and  φc

′′ > 0 on [0, zc + δc[ } 
 
The proofs employed in the preceding section, can be employed here. First, as 

𝜌(𝑥) = 𝛼(𝑥2 − 1) < 0 for 𝑥 ∈] − 1, 𝑏] such that b∈] − 1, 0[, the function 𝜌 is nonincreasing 

on ] − 1, 𝑏], it follows from Theorem 5.5 of [10] that there exists a unique 𝑐∗where 𝜑𝑐∗ is a 

concave solution of (𝑃𝛼 ;𝑎,𝑏,−1). In addition, we have 𝑐∗ < 0. As in the preceding section, this 

means that 𝐸0,2
′ =] −∞, 𝑐∗[. Moreover𝐸0,1

′ = [𝑐∗, 0[, and if 𝑐 ∈]𝑐∗, 0[, then 𝜑𝑐
′′vanishes at a 

first point where 𝜑𝑐
′ < 1. 

After, in the same manner as in the proof of Proposition 3.2, we prove that 𝑐∗ =
𝑖𝑛𝑓𝐸₁′ is finite, and moreover that E1

′ = [0, 𝑐∗] and 𝐸₂′ =]𝑐∗, +∞[. Hence, from Proposition 

4.3, we get 𝑐∗ ≤ −𝛼 𝑎(𝑏 − 1). On the other hand, it follows from Lemma 2.6 that, if 𝑐 ∈ 𝐸₂′, 
then 𝜑𝑐

′′ vanishes at a first point where 𝜑𝑐
′ > 1. 

All this, mixed with an appropriate employ of Lemmas 2.7, 2.8 and 2.9 permit to make 

the following theorem. 

 

Theorem 4.7. We consider 𝛼 ∈ ]0,
1

2
], 𝑎 ≥ 0 and −1 < 𝑏 < 1. There exists 𝑐∗ < 0 and 

𝑐∗ ≥ 𝑎(1 − 𝑏) where: 

1) 𝜑𝑐  is a concave solution of (𝑃𝛼 ;𝑎,𝑏,−1) ; if 𝑏 ∈ ]−1, 0[; 

2) 𝜑𝑐 is a concave-convex solution of  (𝑃𝛼 ;𝑎,𝑏,1) for all 𝑐 ∈]𝑐∗, 0[; 

3) 𝜑𝑐 is a concave-convex-concave solution of  (𝑃𝛼 ;𝑎,𝑏,1)  for all 𝑐 ∈]𝑐∗, 0[; 

4) 𝜑𝑐 is a convex solution of (𝑃𝛼 ;𝑎,𝑏,1) for all c ∈[0, 𝑐∗]; 

5) 𝜑𝑐  is a convex-concave solution of (𝑃𝛼;𝑎,𝑏,1) for all 𝑐 ∈]𝑐∗, +∞[. 
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6. CONCLUSIONS 

 

 

In this work we have presented a set of new and important results for a problem arises 

when looking for similarity solutions to problem of boundary-layertheory. We studied the 

existence, uniqueness and the sign of concave, convex, convex-concave, concave- convex, 

concave-convex-concave and convex-concave-convex solutions to the autonomous third order 

nonlinear differential equation  𝜑′′′ + 𝜑𝜑′′ + 𝛼 (𝜑′2 − 1)  = 0, where 0 < 𝛼 < 1 and 𝜌 is a 

given continuous function. Associated with the above equation, we have the following 

boundary conditions 𝜑 (0) = 𝑎 ≥ √
1

1−𝛼
 , 𝜑′(0) = 𝑏 ≥ 0 and 𝜑′(+∞) = 𝛾 ∈ {−1,1}, we use 

shooting technique and consider the initial conditions 𝜑 (0)  = 𝑎, 𝜑′(0)  = 𝑏 and 𝜑’’ (0) =
𝑐 where 𝑎, 𝑏 and 𝑐 ∈ ℝ we prove that there exists an infinitely many solutions such 

that 𝜑′(+∞)  = 1. 
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