ORIGINAL PAPER
 AN EXTENSION OF SOME SOLUTIONS OF THE FALKNER-SKAN EQUATION

FATMA LABBAOUI ${ }^{1}$, MOHAMMED AIBOUDI ${ }^{1}$

Manuscript received: 10.01.2023; Accepted paper: 18.04.2023;
Published online: 30.06.2023.

Abstract

The differential equation $\varphi^{\prime \prime \prime}+\varphi \varphi^{\prime \prime}+\alpha\left(\varphi^{\prime 2}-1\right)=0$ where $\alpha>0$ is appeared for studying the boundary layer flow past a semi infinitewedge. As a means to prove the existence of solutions verifying $(0)=a \geq \sqrt{\frac{1}{1-\alpha}}, \varphi^{\prime}(0)=b \geq 0$ and $\varphi^{\prime}(t) \rightarrow 1$ or 1 as $t \rightarrow+\infty$ for $0<\alpha<1$. We utilize shooting technique and consider the initial conditions $\varphi(0)=a, \varphi^{\prime}(0)=b$ and $\varphi^{\prime \prime}(0)=c$. We demonstrate that there exists an infinitely many solutions where $\varphi^{\prime}(+\infty)=1$.

Keywords: third ordernonlinear differential equation; boundary layer; convex solution; shooting technique; concave solution; convex-concave solution.

1. INTRODUCTION

The third order autonomous nonlinear differential equation

$$
\begin{equation*}
\varphi^{\prime \prime \prime}+\varphi \varphi^{\prime \prime}+\alpha\left(\varphi^{\prime 2}-1\right)=0 \tag{1}
\end{equation*}
$$

is introduced in 1931 by Falkner and Skan for studying the boundary layer flow past a semi infinite wedge and for this reason is called the Falkner-Skan equation. Many authors as in [1-6] have studied the solutions of this equation.

The general equation of (1) is

$$
\begin{equation*}
\varphi^{\prime \prime \prime}+\varphi \varphi^{\prime \prime}+\rho(\varphi)=0 \tag{2}
\end{equation*}
$$

where $\rho: \mathbb{R} \rightarrow \mathbb{R}$ is some function. The Blasius equation is the most famous example, with $\rho(x)=0$ and arises in the study of laminar boundary layer on a flat plate (see [7]).

Newly, the equation (2) with $g(x)=\beta x^{2}$ and $g(x)=\beta x(x-1)$ has been considered, for example, in the study of free convection and of mixed convection boundary layer flows over a vertical surface embedded in a porous medium (see [8, 9]).

Usually, to solve the boundary value problem $\left(P_{\alpha ; a, b, \gamma}\right)$ where:

$$
\left(P_{\alpha ; a, b, \gamma}\right)\left\{\begin{array}{c}
\varphi^{\prime \prime \prime}+\varphi \varphi^{\prime \prime}+\alpha\left(\varphi^{\prime 2}-1\right)=0 \\
\varphi(0)=a \\
\varphi^{\prime}(0)=b \\
\lim _{t \rightarrow+\infty} \varphi^{\prime}(t)=\gamma
\end{array}\right.
$$

[^0]We will use the shooting technique. We denote φ_{c} the solution of the initial value problem $P_{i}(a, b, c)$ consisting in the equation (1) with the initial conditions $\varphi(0)=a$, $\varphi^{\prime}(0)=b$ and $\varphi^{\prime \prime}(0)=c$. We consider $\left[0, I_{c}\right)$ the right maximal interval of existence of φ_{c}. To get a solution of $\left(P_{\alpha ; a, b, \gamma}\right)$ equivalent to find a value of c where $I_{c}=+\infty$ and $\varphi^{\prime}{ }_{c}(t) \rightarrow \gamma$ as $t \rightarrow+\infty$.

For condition of γ one prove that if γ is constant then $\left(\gamma^{2}-1\right)=0$. To have solutions, in our case of Falkner-Skan equation, the only relevant conditions are $\varphi^{\prime}(t) \rightarrow-1$ or $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$.

In this work, we will study the existence of concave, convex, concave-convex, convex-concave, concave-convex-concave and convex-concave-convex solutions to the boundary value problem $\left(P_{\alpha ; a, b,-1}\right)$ and $\left(P_{\alpha ; a, b, 1}\right)$ for $0<\alpha<1, \mathrm{a} \geq \sqrt{\frac{1}{1-\alpha}}$ and $\mathrm{b} \geq 0$.

2. PRELIMINARY RESULTS

We consider φ as a solution to the equation (1) on some interval J, let $K_{\varphi}: J \rightarrow \mathbb{R}$ be the function defined by

$$
\begin{equation*}
K_{\varphi}=\left[\varphi^{\prime \prime}+\alpha \varphi\left(\varphi^{\prime}-1\right)\right] \exp ^{(1-\alpha) F} \tag{3}
\end{equation*}
$$

where F denote any primitive function of φ. This function is got by integrating the equation (1). In fact, if φ is a solution of (1) then

$$
K_{\varphi}^{\prime}=\left[\alpha\left(\varphi^{\prime}-1\right)\left((1-\alpha) \varphi^{2}-1\right)\right] \exp ^{(1-\alpha) F}
$$

In the following, we put lemmas that will be useful later.
Lemma 2.1. We consider φ as a solution to (1) on some maximal interval J. If there exists $t_{0} \in J$ such that $\varphi^{\prime}\left(t_{0}\right) \in\{-1,1\}$ and $\varphi^{\prime \prime}\left(t_{0}\right)=0$, then $J=\mathbb{R}$ and $\varphi^{\prime \prime}(t)=0$ for all $t \in \mathbb{R}$.

Proof: Cf [10]. Proposition 3.1 item 3.
Lemma 2.2. We consider $\alpha>0$ and φ be a solution to equation (1) on some interval J, such that φ^{\prime} is not constant.

1) If there exists $x<y \in J$ such that $\varphi^{\prime \prime}(x) \leq 0$ and $\left(\varphi^{\prime 2}-1\right)>0$ on $] x, y[$, then $\varphi^{\prime \prime}(t)<0$ for all $\left.\left.t \in\right] x, y\right]$.
2) If there exists $x<y \in J$ such that $\varphi^{\prime \prime}(x) \geq 0$ and $\left(\varphi^{\prime 2}-1\right)<0$ on $] x, y[$, then $\varphi^{\prime \prime}(t)>0$ for all $\left.\left.t \in\right] x, y\right]$.
3) If there exists $x<y \in J$ such that $\varphi^{\prime \prime}<0$ on $] x, y\left[\right.$ and $\varphi^{\prime \prime}(y)=0$, then $\left(\varphi^{\prime 2}(y)-1\right)<0$.
4) If there exists $x<y \in J$ such that $\varphi^{\prime \prime}>0$ on $] x, y\left[\right.$ and $\varphi^{\prime \prime}(y)=0$, then $\left(\varphi^{\prime 2}(y)-1\right)>0$.

Proof: We consider F as a primitive function of φ. From (1) we deduce the relation

$$
\left(\varphi^{\prime \prime} \exp F\right)^{\prime}=-\alpha\left(\varphi^{\prime 2}-1\right) \exp F
$$

The assertions 1-4 obtain easily from this relation and from preceding lemma. We verify the first and the third of these assertions. For the first one, as $\psi=\varphi^{\prime \prime} \exp F$ is decreasing on $[x, y]$, we get

$$
\begin{gathered}
t \geq x \Rightarrow \psi(t) \leq \psi(x) \\
\Rightarrow \varphi^{\prime \prime}(t) \exp F(t) \leq \varphi^{\prime \prime}(s) \exp F(x) \\
\Rightarrow \varphi^{\prime \prime}(t) \leq \varphi^{\prime \prime}(x) \exp (F(x)-F(t)) \\
\left.\left.\Rightarrow \varphi^{\prime \prime}(t) \leq 0, \forall t \in\right] x, y\right] .
\end{gathered}
$$

For the third one, as $\psi<0$ on $] x, y$ [and $\psi(y)=0$, then $\psi^{\prime}(y) \geq 0$.

$$
\psi^{\prime}(y)=-\alpha\left(\varphi^{\prime 2}(y)-1\right) \exp F \geq 0
$$

This and Lemma 2.1 imply that $\left(\varphi^{\prime 2}(y)-1\right)<0$.
Lemma 2.3. We consider φ as a solution to (1) on some maximal interval $] I_{-}, I_{+}\left[\right.$. If I_{+}is finite, then φ^{\prime} and $\varphi^{\prime \prime}$ are unbounded in any neighborhood of I_{+}.

Proof: According [10], Proposition 3.1 item 6.
Lemma 2.4. We put $\alpha \neq 0$. If φ is a solution of (1) on some interval] $\eta,+\infty[$ such that $\varphi^{\prime}(t) \rightarrow \gamma$ as $t \rightarrow+\infty$, then $\gamma \in\{-1,1\}$. In addition, if φ is of constant sign at infinity, then $\varphi^{\prime \prime}(t) \rightarrow 0$ as $t \rightarrow+\infty$.

Proof: According [10], Proposition 3.1 item 4 and 5.
Lemma 2.5. We put $\alpha>0$ and we consider φ as a solution to (1) on some right maximal interval $J=\left[\eta,+\infty\left[\right.\right.$. If $\varphi \geq 0$ and $\varphi^{\prime} \geq 0$ on J, then $I_{+}=+\infty$ and φ^{\prime} is bounded on J.

Proof: We put $G=G_{\varphi}$ the function defined on J by

$$
\begin{equation*}
G(t)=3 \varphi^{\prime \prime}(t)^{2}+\alpha \varphi^{\prime}(t)\left(2 \varphi^{\prime 2}(t)-6\right) \tag{4}
\end{equation*}
$$

Using (1), simply we get that

$$
G^{\prime}(t)=-6 \varphi(t) \varphi^{\prime \prime}(t)^{2} \quad \forall t \in J
$$

and, as $\varphi \geq 0$ on J this implies that G is decreasing. Therefore

$$
\begin{gathered}
\forall t \in J=\left[\eta, I_{+}[: t>\eta \Rightarrow G(t) \leq G(\eta)\right. \\
\alpha \varphi^{\prime}(t)\left(2 \varphi^{\prime}(t)^{2}-6\right) \leq 3 \varphi^{\prime \prime}(t)^{2}+\alpha \varphi^{\prime}(t)\left(2 \varphi^{\prime 2}(t)-6\right) \leq G(\eta), \forall t \in J
\end{gathered}
$$

It follows that φ^{\prime} is bounded on J and thanks to lemma 2.3 that $I_{+}=+\infty$.
Lemma 2.6. We put $\alpha>0$ and we consider φ as a solution to (1) on some right maximal interval $J=\left[\eta, I_{+}\left[\right.\right.$. If $\varphi(\eta) \geq 0, \varphi^{\prime}(\eta) \geq 1$ and $\varphi^{\prime \prime}(\eta)>0$, then there exists $\left.t_{0} \in\right] \eta, I_{+}[$ where $\varphi^{\prime \prime}>0$ on $\left[\eta, t_{0}\left[\right.\right.$ and $\varphi^{\prime \prime}\left(t_{0}\right)=0$.

Proof: Suppose for contradiction that $\varphi^{\prime \prime}>0$ on J. Then $\varphi(t) \geq 0, \varphi^{\prime}(t) \geq 1$ for all $t \in J$. Then we get

$$
\begin{equation*}
\varphi^{\prime \prime \prime}=-\varphi \varphi^{\prime \prime}-\alpha\left(\varphi^{\prime 2}-1\right) \leq 0 \tag{5}
\end{equation*}
$$

It follows that $0<\varphi^{\prime \prime}(t) \leq c$ for all $t \in J$ and therefore, by Lemma 2.4 , we get $I_{+}=$ $+\infty$. After, we put $x>\eta$ and $\epsilon=\alpha\left(\varphi^{\prime}(x)^{2}-1\right)$. One has $\epsilon>0$ and, come again to (5), we get

$$
\varphi^{\prime \prime \prime} \leq-\epsilon \text { on }[x,+\infty[.
$$

By integrating, we obtain

$$
\forall t \geq x, \quad \varphi^{\prime \prime}(t)-\varphi^{\prime \prime}(x) \leq-\epsilon(t-x)
$$

and a contradiction with the fact that $\varphi^{\prime \prime}(t)>0$.Therefore, there exists $\left.t_{0} \in\right] \eta, I_{+}[$where $\varphi^{\prime \prime}>0$ on $\left[\eta, t_{0}\left[\right.\right.$ and $\varphi^{\prime \prime}\left(t_{0}\right)=0$.

Lemma 2.7. We put $\alpha \in\left[\frac{1}{2}, 1\right.$ [and we consider φ as a solution to (1) on some right maximal interval $J=] I_{-}, I_{+}\left[\right.$. If there exists $t_{0} \in J$ where $\varphi\left(t_{0}\right)>\sqrt{\frac{1}{1-\alpha}}, \varphi^{\prime}\left(t_{0}\right)>1$ and

$$
\alpha \varphi\left(t_{0}\right)\left(1-\varphi^{\prime}\left(t_{0}\right)\right) \leq \varphi^{\prime \prime}\left(t_{0}\right) \leq 0
$$

Then $I_{+}=+\infty$ and $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$. In addition $\varphi^{\prime \prime} \leq 0$ on $\left[t_{0},+\infty[\right.$.
Proof: We put $\mu=\sup S\left(t_{0}\right)$, such that

$$
S\left(t_{0}\right)=\{t \in] t_{0}, I_{+}\left[: 1<\varphi^{\prime}<\varphi^{\prime}\left(t_{0}\right) \text { and } \varphi^{\prime \prime}<0 \text { on }\right] t_{0}, t[\}
$$

The set $S\left(t_{0}\right)$ is not empty. This is clear if $\varphi^{\prime \prime}\left(t_{0}\right)<0$, and if $\varphi^{\prime \prime}\left(t_{0}\right)=0$ it follows from the fact that

$$
\varphi^{\prime \prime \prime}\left(t_{0}\right)=-\alpha\left(\varphi^{\prime 2}\left(t_{0}\right)-1\right)<0
$$

We stay to prove that $\mu=I_{+}$, suppose for contradiction that $\mu<T_{+}$. From Lemma 2.2, item 1 , we obtain that $\varphi^{\prime \prime}(\mu)<0$, which implies, by definition of μ, that $\varphi^{\prime}(\mu)=1$. Hence, as the function K_{f} defined by (3) is increasing on $\left[t_{0}, \mu\right]$, we get

$$
\begin{gathered}
\mu \geq t_{0} \Rightarrow K_{\varphi}(\mu) \geq K_{\varphi}\left(t_{0}\right) \\
\Rightarrow \varphi^{\prime \prime}(\mu) \exp (1-\alpha) F(\mu) \geq\left[\varphi^{\prime \prime}\left(t_{0}\right)-\alpha \varphi\left(t_{0}\right)\left(1-\varphi^{\prime}\left(t_{0}\right)\right)\right] \exp (1-\alpha) F(\mu) \geq 0 \\
\Rightarrow \varphi^{\prime \prime}(\mu) \geq 0
\end{gathered}
$$

a contradiction. In consequence, we have $\mu=I_{+}$. From Lemma 2.3, it follows that $\mathrm{I}_{+}=+\infty$. As $\varphi^{\prime \prime}<0$ on $\left[t_{0},+\infty\right.$ [, by vertue of Lemma 2.4, we obtain that $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$.

Lemma 2.8. We consider $\alpha \in\left[\frac{1}{2}, 1[\right.$ and φ a solution to equation (1) on some right maximal interval $J=] I_{-}, I_{+}$. If there exists $t_{0} \in J$ such that $\varphi\left(t_{0}\right)>\sqrt{\frac{1}{1-\alpha}}, 0<\varphi^{\prime}\left(t_{0}\right)<1$ and

$$
0 \leq \varphi^{\prime \prime}\left(t_{0}\right) \leq \alpha \varphi\left(t_{0}\right)\left(1-\varphi^{\prime}\left(t_{0}\right)\right)
$$

Then $I_{+}=+\infty$ and $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$. In addition $\varphi^{\prime \prime} \geq 0$ on $\left[t_{0},+\infty[\right.$.
Proof: If we put $\lambda=\sup R\left(t_{0}\right)$, with

$$
R\left(t_{0}\right)=\{t \in] t_{0}, I_{+}\left[: \varphi^{\prime}\left(t_{0}\right)<\varphi^{\prime}<1 \text { and } \varphi^{\prime \prime}>0 \text { on }\right] t_{0}, t[\} .
$$

The set $R\left(t_{0}\right)$ is not empty. This is clear if $\varphi^{\prime \prime}\left(t_{0}\right)>0$, and if $\varphi^{\prime \prime}\left(t_{0}\right)=0$ it follows from the fact that

$$
\varphi^{\prime \prime \prime}\left(t_{0}\right)=-\alpha\left(\varphi^{\prime 2}\left(t_{0}\right)-1\right)>0
$$

We claim that $\lambda=I_{+}$, suppose for contradiction that $\lambda<I_{+}$. From Lemma 2.2, item 2, we obtain that $\varphi^{\prime \prime}(\lambda)>0$, which implies, by definition of λ, that $\varphi^{\prime}(\lambda)=1$. Hence, as the function K_{φ} defined by (3) is decreasing on $\left[t_{0}, \lambda\right]$, we get

$$
\begin{gathered}
\lambda \geq t_{0} \Rightarrow K_{\varphi}(\lambda) \leq K_{\varphi}\left(t_{0}\right) \\
\Rightarrow \varphi^{\prime \prime}(\lambda) \exp (1-\alpha) F(\lambda) \leq\left[\varphi^{\prime \prime}\left(t_{0}\right)-\alpha \varphi\left(t_{0}\right)\left(1-\varphi^{\prime}\left(t_{0}\right)\right)\right] \exp (1-\alpha) F(\lambda) \leq 0 \\
\Rightarrow \varphi^{\prime \prime}(\lambda) \leq 0
\end{gathered}
$$

a contradiction. In consequence, we have $\lambda=I_{+}$. From Lemma 2.3, it follows that $I_{+}=+\infty$. As $\varphi^{\prime \prime}>0$ on $\left[t_{0},+\infty\right.$ [, by vertue of Lemma 2.4, we obtain that $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$.

Lemma 2.9. We consider $\alpha \in\left[\frac{1}{2}, 1\right.$ [and φ a solution to equation (1) on some right maximal interval $J=] I_{-}, I_{+}\left[\right.$. If there exists $t_{0} \in J$ such that $\varphi\left(t_{0}\right)>\sqrt{\frac{1}{1-\alpha}}, 0<\varphi^{\prime}\left(t_{0}\right)<1$ and

$$
-\alpha \varphi\left(t_{0}\right) \varphi^{\prime}\left(t_{0}\right) \leq \varphi^{\prime \prime}\left(t_{0}\right) \leq 0
$$

Then $I_{+}=+\infty$ and $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$. In addition there exist $\eta \geq t_{0}$ such that $\varphi^{\prime \prime} \leq 0$ on $\left[t_{0}, \eta\right.$ [and $\varphi^{\prime \prime} \geq 0$ on $[\eta,+\infty[$.

Proof: If $\varphi^{\prime \prime}\left(t_{0}\right)=0$, the conclusion follows from Lemma 2.8.
If $\varphi^{\prime \prime}\left(t_{0}\right)<0$, we put $\theta=\sup T\left(t_{0}\right)$

$$
T\left(t_{0}\right)=\{t \in] t_{0}, I_{+}\left[: 0<\varphi^{\prime}<\varphi^{\prime}\left(t_{0}\right) \text { and } \varphi^{\prime \prime}<0 \text { on }\right] t_{0}, t[\}
$$

The set $T\left(t_{0}\right)$ is not empty. We claim that $\theta<I_{+}$. Suppose for contradiction that $\theta=$ I_{+}. From Lemma 2.3, we get that $\theta=I_{+}=+\infty, 0<\varphi^{\prime}<\varphi^{\prime}\left(t_{0}\right)$ and $\varphi^{\prime \prime}<0$ on $] 0,+\infty[$. Then φ_{c}^{\prime} is decreasing, and consequently φ_{c}^{\prime} has a finite limite γ at infinity. By Lemma 2.4, we finally obtain that $\gamma \in\{-1,1\}$ a contraduction. In consequence we have $\theta<I_{+}$.

By definition of θ, that $\varphi^{\prime}(\theta)=0$ or $\varphi^{\prime \prime}(\theta)=0$. We claim that $\varphi^{\prime}(\theta) \neq 0$, suppose for contraduction that $\varphi^{\prime}(\theta)=0$, we consider the function $L_{\varphi}:\left[t_{0}, \theta\right] \rightarrow \mathbb{R}$ defined by

$$
L_{\varphi}=\left(\varphi^{\prime \prime}+\alpha \varphi \varphi^{\prime}\right) \exp (1-\alpha) F,
$$

where F denote any primitive function of φ, in fact, if φ is a solution of (1) then

$$
L_{\varphi}^{\prime}=\left[\left((1-\alpha) \varphi^{2} \varphi^{\prime}+1\right)\right] \exp (1-\alpha) F
$$

The function L_{φ} is increasing on $\left[t_{0}, \theta\right]$, we get

$$
\begin{aligned}
& \theta \geq t_{0} \Rightarrow L_{\varphi}(\theta) \geq L_{\varphi}\left(t_{0}\right) \\
& \Rightarrow \varphi^{\prime \prime}(\theta) \exp (1-\alpha) F(\theta) \geq {\left[\varphi^{\prime \prime}\left(t_{0}\right)+\alpha \varphi\left(t_{0}\right) \varphi^{\prime}\left(t_{0}\right)\right] \exp (1-\alpha) F(\theta) \geq 0 } \\
& \Rightarrow \varphi^{\prime \prime}(\theta) \geq 0
\end{aligned}
$$

A contradiction. Consequently, we have $\varphi^{\prime \prime}(\theta)=0$ and $0<\varphi^{\prime}(\theta)<1$. From Lemma 2.8 it follows that $I_{+}=+\infty$ and $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$.

3. DESCRIPTION OF OUR APPROACH WHEN $b \geq 1$

We consider $\alpha>0, a \geq \sqrt{\frac{1}{1-\alpha}}$ and $b \geq 1$. The method we will use to obtain solutions of the boundary value problems $\left(P_{\alpha ; a, b,-1}\right)$ and $\left(P_{\alpha ; a, b, 1}\right)$ is the shooting technique. Specifically, for $c \in \mathbb{R}$, we denote by φ_{c} the solution of equation (1) verifying the initial conditions

$$
\begin{equation*}
\varphi_{c}(0)=a, \varphi_{c}^{\prime}(0)=b \text { and } \varphi_{c}^{\prime \prime}(0)=c \tag{6}
\end{equation*}
$$

and we consider $\left[0, I_{c}\right.$ [the right maximal interval of existence of φ_{c}. Therefore, finding a solution of one of the problems $\left(P_{\alpha ; a, b,-1}\right)$ and $\left(P_{\alpha ; a, b, 1}\right)$ amounts to finding a value of c where $I^{+}=+\infty$ and $\varphi^{\prime}(t) \rightarrow-1$ or 1 as $t \rightarrow+\infty$.

We divide \mathbb{R} into the four sets E_{0}, E_{1}, E_{2} and E_{3} defined as follows. We put

$$
\begin{gathered}
\left.E_{0}=\right] 0,+\infty[. \\
E_{1}=\left\{c \leq 0 ; 1 \leq \varphi _ { c } ^ { \prime } \leq b \text { and } \varphi _ { c } ^ { \prime \prime } \leq 0 \text { on } \left[0, I_{c}[\}\right.\right. \\
E_{2}=\left\{c \leq 0 ; \exists z_{c} \in\left[0, I_{c}\left[, \exists \delta_{c}>0 \text { such that } \varphi_{c}^{\prime}>1 \text { on }\right] 0, z_{c}[,\right.\right. \\
\left.\varphi_{c}^{\prime}<1 \text { on }\right] z_{c}, z_{c}+\delta_{c}\left[\text { and } \varphi _ { c } ^ { \prime \prime } \leq 0 \text { on } \left[0, z_{c}+\delta_{c}[\} .\right.\right.
\end{gathered}
$$

and

$$
\begin{aligned}
E_{3}= & \left\{c \leq 0 ; \exists y_{c} \in\left[0, I_{c}\left[, \exists \sigma_{c}>0 \text { such that } \varphi_{c}^{\prime \prime}<0 \text { on }\right] 0, y_{c}[\right.\right. \\
& \left.\varphi_{c}^{\prime \prime}>0 \text { on }\right] y_{c}, y_{c}+\delta_{c}\left[\operatorname{and} \varphi_{c}^{\prime}>1 \text { on }\right] 0, y_{c}+\sigma_{c}[\} .
\end{aligned}
$$

This is evident that E_{0}, E_{1}, E_{2} and E_{3} are disjoint sets and that their union is the whole line of real numbers. Thanks to Lemma 2.3 and 2.4 if $c \in E_{1}$ then $I_{+}=+\infty$ and $\varphi_{c}^{\prime}(t) \rightarrow$ 1 as $t \rightarrow+\infty$. In fact, E_{1} is the set of values of c for which φ_{c} is a concave solution of ($P_{\alpha ; a, b, 1}$).

As $\alpha>0$, the study done in [10] (specialy in section 5.2) gives, on the one hand, that $E_{3}=\emptyset$ (which can easily be conclude from Lemma 2.2, item 1) and, on the other hand, that either $E_{1}=\emptyset$ and $\left.\left.E_{2}=\right]-\infty, 0\right]$, or there exist $c^{*} \leq 0$ such that $E_{1}=\left[c^{*}, 0\right]$ and $\left.C_{2}=\right]-$ $\infty, c^{*}[$.

For the purpose of completing the stady, we divide the set E_{2} into the following two subsets

$$
\begin{gathered}
E_{2,1}=\left\{c \in E _ { 2 } : \varphi _ { c } ^ { \prime } > 0 \text { on } \left[0, I_{c}[\}\right.\right. \\
E_{2,2}=\left\{c \in E_{2}: \exists x_{c} \in\right] 0, I_{c}\left[\text { such that } \varphi _ { c } ^ { \prime } > 0 \text { on } \left[0, x_{c}\left[\text { and } \varphi_{c}^{\prime}\left(x_{c}\right)=0\right\}\right.\right.
\end{gathered}
$$

In the following, we give some characteristics of each of these subsets that hold for all $\alpha \in] 0,1]$.

Lemma 3.1. If $c \in \mathbb{R}$ where $\varphi_{c}^{\prime}>0$ on $\left[0, I_{c}\left[\right.\right.$, then $I_{c}=+\infty$ and φ_{c}^{\prime} is bounded.
In addition, if $c \leq 0$, then $\varphi_{c}^{\prime} \leq \max \{b, \sqrt{3}\}$ on $[0,+\infty[$.
Proof: We consider $c \in \mathbb{R}$ such that $\varphi_{c}^{\prime}>0$ on $\left[0, I_{c}\left[\right.\right.$, then $\varphi_{c} \geq a \geq 0$ on [$0, I_{c}$ [and thanks to Lemma 2.5, it follows that $I_{c}=+\infty$ and φ_{c}^{\prime} is bounded.

It stay to prove that $\varphi_{c}^{\prime} \leq \max \{b, \sqrt{3}\}$ in the case where $c \leq 0$. As in (4), we define the function G_{c} on $[0,+\infty[$ by

$$
G_{c}(t)=3 \varphi_{c}^{\prime \prime}(t)^{2}+\alpha \varphi_{c}^{\prime}(t)\left(2 \varphi_{c}^{\prime}(t)^{2}-6\right)
$$

and, as $\varphi_{c} \geq 0$, it means that G_{c} is nonincreasing.
If $\varphi_{c}^{\prime \prime} \leq 0$ on $] 0,+\infty$ [, then $\varphi_{c}^{\prime} \leq b$. Contrary, there exists t_{0} such that $\varphi_{c}^{\prime \prime}<0$ on $] 0, t_{0}\left[\right.$ and $\varphi_{c}^{\prime \prime}\left(t_{0}\right)=0$. By Lemma 2.2 item 3, it implies that $\varphi_{c}^{\prime}<1$, and consequently $G_{c}\left(t_{0}\right)<0$. Then, $G_{c}<0$ on $] t_{0},+\infty\left[\right.$ which implies that $\varphi_{c}^{\prime} \leq \sqrt{3}$ on $] t_{0},+\infty[$. As $\varphi_{c}^{\prime} \leq b$ on $] 0, t_{0}[$, the proof is complete.

Proposition 3.2. We put $c^{*}=\inf \left(E_{1} \cup E_{2,1}\right)$. Then c^{*} is finite.
Proof: We suppose $c \in E_{1} \cup E_{2,1}$. By definition of E_{1} and $E_{2,1}$, and thanks to lemma 3.1, we get $I_{c}=+\infty$ and $0<\varphi_{c}^{\prime}<d$ on $[0,+\infty[$ such that $d=\max \{b, \sqrt{3}\}$. As

$$
\begin{gathered}
\left(\varphi_{c}^{\prime \prime}+\varphi_{c} \varphi_{c}^{\prime}\right)^{\prime}=\varphi_{c}^{\prime \prime \prime}+\varphi_{c} \varphi_{c}^{\prime \prime}+\varphi_{c}^{\prime 2} \\
=-\alpha\left(\varphi_{c}^{\prime 2}-1\right)+\varphi_{c}^{\prime 2} \\
=-\alpha \varphi_{c}^{\prime 2}+\alpha+\varphi_{c}^{\prime 2} \\
\leq \alpha+d^{2}
\end{gathered}
$$

By integrating, we get

$$
\forall t \geq 0, f_{c}^{\prime \prime}(t)+f_{c}(t) f_{c}^{\prime}(t) \leq c+a b+\left(\beta+d^{2}\right) t
$$

We integrate once again, for all $t \geq 0$, we obtain

$$
0<\varphi_{c}^{\prime}(t) \leq \varphi_{c}^{\prime}(t)+\frac{1}{2} \varphi_{c}^{2}(t) \leq b+\frac{1}{2} a^{2}+(c+a b)+\frac{1}{2}\left(\alpha+d^{2}\right) t^{2}
$$

Then we have

$$
c \geq-a b-\sqrt{\left(2 b+a^{2}\right)\left(\alpha+d^{2}\right)}
$$

Remark 3.3. If $C_{1} \neq \emptyset$, then $E_{1}=\left[c^{*}, 0\right]$ and moreover $E_{2,1} \subset\left[c_{*}, c^{*}[\right.$.

4. THE CASE $\alpha \in\left[\frac{1}{2}, 1[\right.$ AND $b \geq 1$

In this part we impose that $\alpha \in\left[\frac{1}{2}, 1\left[, a \geq \sqrt{\frac{1}{1-\alpha}}\right.\right.$ and $b \geq 1$.
Proposition 4.1. If $c>0$, then $T_{c}=+\infty$. Moreover, $\varphi^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$.
Proof: From Lemma 2.6, there exists $\left.t_{0} \in\right] 0, I_{c}$ [such that $\varphi_{c}^{\prime \prime}>0$ on $\left[0, t_{0}\left[\right.\right.$ and $\varphi_{c}^{\prime \prime}\left(t_{0}\right)=0$. As $\varphi_{c}\left(t_{0}\right)>\sqrt{\frac{1}{1-\alpha}}$ and $\varphi_{c}^{\prime}\left(t_{0}\right)>b>1$. In consequence

$$
\alpha \varphi_{c}\left(t_{0}\right)\left(1-\varphi_{c}^{\prime}\left(t_{0}\right)\right) \leq \varphi_{c}^{\prime \prime}\left(t_{0}\right)=0
$$

The conclusion follows from Lemma 2.7.
Remark 4.2. Thanks to the preceding proposition, we note that φ_{c} is a convex-concave solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $c>0$.

Proposition 4.3. There exists $c^{*} \leq-\alpha a(b-1)$ such that $E_{1}=\left[c^{*}, 0\right]$.
Proof: If $b=1$, then $E_{1}=\{0\}$.
If $b>1$.on the one hand, from Lemma 2.7 with $t_{0}=0$ (or Lemma 5.12 of [10]), it follows that $[-\alpha a(b-1), 0] \subset E_{1}$. On the other hand, Lemma 5.12 of [10] implies that E_{2} is an interval of the type $]-\infty, c^{*}\left[\right.$. This complete the proof since $\left.\left.E_{1}=\right]-\infty, 0\right] \backslash E_{2}$.

Remark 4.4. From the preceding proposition, we have that $0 \notin E_{2}$.
Proposition 4.5. If $c \in E_{2,1}$, then $I_{c}=+\infty$ and $\varphi_{c}^{\prime}(t) \rightarrow 1$ as $t \rightarrow+\infty$.
Proof: Let $c \in E_{2,1}$. By Proposition 4.3, we have $c<0$.
We impose that $\varphi_{c}^{\prime \prime}<0$ on $] 0, I_{c}\left[\right.$. Then φ_{c}^{\prime} is decreasing and $0<\varphi_{c}^{\prime} \leq b$. From Lemma 2.3 and Lemma 2.4 we get that $I_{c}=+\infty$ and also φ_{c}^{\prime} has a limit γ at infinity such that $\gamma \in\{-1,1\}$. By definition of the set $E_{2,1}$ we obtain

$$
\exists t_{c} \in\left[0,+\infty\left[\text { such that } \varphi_{c}^{\prime}\left(t_{c}\right)=1\right.\right.
$$

Also we have $\varphi_{c}^{\prime \prime}$ vanishes on $] 0, I_{c}\left[\right.$, let t_{0} be the first point where $\varphi_{c}^{\prime \prime}$ vanishes. Thanks to Lemma 2.2 item 3, we have $0<\varphi_{c}^{\prime}\left(t_{0}\right) \leq 1$, and the conclusion follows from Lemma 2.8.

Remark 4.6. If $c \in E_{2,1}$ then φ_{c} is a concave-convex solution of $\left(P_{\alpha ; a, b, 1}\right)$.
Theorem 4.7.We consider $\alpha \in\left[\frac{1}{2}, 1\left[, a \geq \sqrt{\frac{1}{1-\alpha}}\right.\right.$ and $b \geq 1$. There exists $c_{*}<0$ where:

1) φ_{c} is a solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] c_{*},+\infty[$. Moreover, there exists $c^{*} \in\left[c_{*},-\alpha a(b-1)\right] ;$
2) φ_{c} is a convex-concave solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] 0,+\infty[$;
3) φ_{c} is a concave solution of $\left(P_{\alpha ; a, b, 1}\right)$; for all $c \in\left[c^{*}, 0\right]$;
4) φ_{c} is a concave-convex solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] c_{*}, c^{*}[$;
5) $\quad \varphi_{c}$ is a concave-convex-concave solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] c_{*}, c^{*}[$.

Proof: All these results follow from the Lemmas 2.1, 2.7, 2.8 and 2.9, and the Propositions 4.1, 4.3 and 4.5.
5. THE CASE $\left.\alpha \in] 0, \frac{1}{2}\right]$ AND $-1<b<1$

We consider $\alpha \in] 0, \frac{1}{2}$], $a \geq 0$ and $-1<b<1$. In this case, we divide \mathbb{R} into four sets $E_{0,1}^{\prime}, E_{0,2}^{\prime}, E_{1}{ }^{\prime}$ and $E_{2}{ }^{\prime}$ such that

$$
\begin{gathered}
\mathrm{E}_{0,1}^{\prime}=\left\{\mathrm { c } < 0 : \varphi _ { \mathrm { c } } ^ { \prime } > - 1 \text { on } \left[0, \mathrm{I}_{\mathrm{c}}[\}\right.\right. \\
\mathrm{E}_{0,2}^{\prime}=\left\{\mathrm{c}<0: \exists \mathrm{x}_{\mathrm{c}} \in\right] 0, \mathrm{I}_{\mathrm{c}}\left[\text { such that } \varphi _ { \mathrm { c } } ^ { \prime } > - 1 \text { on } \left[0, \mathrm{x}_{\mathrm{c}}\left[\text { and } \varphi_{\mathrm{c}}^{\prime}\left(\mathrm{x}_{\mathrm{c}}\right)=-1\right\}\right.\right. \\
\mathrm{E}_{1}^{\prime}=\left\{\mathrm { c } \geq 0 ; \mathrm { b } \leq \varphi _ { \mathrm { c } } ^ { \prime } \leq 1 \text { and } \varphi _ { \mathrm { c } } ^ { \prime \prime } \geq 0 \text { on } \left[0, \mathrm{I}_{\mathrm{c}}[\}\right.\right. \\
\mathrm{E}_{2}^{\prime}=\left\{\mathrm{c} \geq 0 ; \exists \mathrm{z}_{\mathrm{c}} \in\left[0, \mathrm{I}_{\mathrm{c}}\left[, \exists \delta_{\mathrm{c}}>0 \text { such that } \varphi_{\mathrm{c}}^{\prime}>1 \text { on }\right] 0, \mathrm{z}_{\mathrm{c}}[\right.\right. \\
\left.\varphi_{\mathrm{c}}^{\prime}>1 \text { on }\right] \mathrm{z}_{\mathrm{c}}, \mathrm{z}_{\mathrm{c}}+\delta_{\mathrm{c}}\left[\text { and } \varphi _ { \mathrm { c } } ^ { \prime \prime } > 0 \text { on } \left[0, \mathrm{z}_{\mathrm{c}}+\delta_{\mathrm{c}}[\}\right.\right.
\end{gathered}
$$

The proofs employed in the preceding section, can be employed here. First, as $\rho(x)=\alpha\left(x^{2}-1\right)<0$ for $\left.\left.x \in\right]-1, b\right]$ such that $\left.\mathrm{b} \in\right]-1,0$, the function ρ is nonincreasing on] $-1, b$], it follows from Theorem 5.5 of [10] that there exists a unique c_{*} where $\varphi_{c_{*}}$ is a concave solution of $\left(P_{\alpha ; a, b,-1}\right)$. In addition, we have $c_{*}<0$. As in the preceding section, this means that $\left.E_{0,2}^{\prime}=\right]-\infty, c_{*}\left[\right.$. Moreover $E_{0,1}^{\prime}=\left[c_{*}, 0[\right.$, and if $c \in] c_{*}, 0\left[\right.$, then $\varphi_{c}^{\prime \prime}$ vanishes at a first point where $\varphi_{c}^{\prime}<1$.

After, in the same manner as in the proof of Proposition 3.2, we prove that $c^{*}=$ $\inf E_{1}{ }^{\prime}$ is finite, and moreover that $\mathrm{E}_{1}^{\prime}=\left[0, c^{*}\right]$ and $\left.E_{2}{ }^{\prime}=\right] c^{*},+\infty[$. Hence, from Proposition 4.3, we get $c^{*} \leq-\alpha a(b-1)$. On the other hand, it follows from Lemma 2.6 that, if $c \in E_{2}{ }^{\prime}$, then $\varphi_{c}^{\prime \prime}$ vanishes at a first point where $\varphi_{c}^{\prime}>1$.

All this, mixed with an appropriate employ of Lemmas 2.7, 2.8 and 2.9 permit to make the following theorem.

Theorem 4.7. We consider $\left.\alpha \in] 0, \frac{1}{2}\right], a \geq 0$ and $-1<b<1$. There exists $c_{*}<0$ and $c^{*} \geq a(1-b)$ where:

1) φ_{c} is a concave solution of $\left(P_{\alpha ; a, b,-1}\right)$; if $\left.b \in\right]-1,0[$;
2) φ_{c} is a concave-convex solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] c_{*}, 0[$;
3) φ_{c} is a concave-convex-concave solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] c_{*}, 0[$;
4) φ_{c} is a convex solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\mathrm{c} \in\left[0, c^{*}\right]$;
5) φ_{c} is a convex-concave solution of $\left(P_{\alpha ; a, b, 1}\right)$ for all $\left.c \in\right] c^{*},+\infty[$.

6. CONCLUSIONS

In this work we have presented a set of new and important results for a problem arises when looking for similarity solutions to problem of boundary-layertheory. We studied the existence, uniqueness and the sign of concave, convex, convex-concave, concave- convex, concave-convex-concave and convex-concave-convex solutions to the autonomous third order nonlinear differential equation $\varphi^{\prime \prime \prime}+\varphi \varphi^{\prime \prime}+\alpha\left(\varphi^{\prime 2}-1\right)=0$, where $0<\alpha<1$ and ρ is a given continuous function. Associated with the above equation, we have the following boundary conditions $\varphi(0)=a \geq \sqrt{\frac{1}{1-\alpha}}, \varphi^{\prime}(0)=b \geq 0$ and $\varphi^{\prime}(+\infty)=\gamma \in\{-1,1\}$, we use shooting technique and consider the initial conditions $\varphi(0)=a, \varphi^{\prime}(0)=b$ and $\varphi^{\prime \prime}(0)=$ c where a, b and $c \in \mathbb{R}$ we prove that there exists an infinitely many solutions such that $\varphi^{\prime}(+\infty)=1$.

REFERENCES

[1] Hartree, D.R., Mathematica Proceedings of the Cambridge Philosophical Society, 33(2), 223, 1973.
[2] Weyl, H., Annals of Mathematics, 43(2), 381, 1942.
[3] Coppel, W.A., Mathematical and Physical Sciences, 253(1023), 101, 1960.
[4] Hartman, P., Ordinary Differential Equations, JohnWiley\& Sons, New York, NY, USA, 1964.
[5] Yang, G.C., Applied Mathematics Letters, 17, 1261, 2004.
[6] Aiboudi, M., Labbaoui, F., International Journal of Analysis and Application, 18(3), 409, 2020.
[7] Brighi, B., Fruchard, A., Sari, T., Advances in Differential Equations, 13(5-6), 509, 2008.
[8] Aiboudi, M., Brighi, B., Archiv der Mathematik, 93(2), 165, 2009.
[9] Aiboudi, M., Boudjema Djeffa, K., Brighi, B., Abstract and Applied Analysis, 2018, 4340204, 2018.
[10] Brighi, B., Results in Mathematics, 61(3-4), 355, 2012.

[^0]: ${ }^{1}$ University Oran 1, Ahmed Ben Bella, Department of Mathematics, Faculty of Exact and Applied Sciences, Laboratory of Mathematics Analysis and Applications (L.A.M.A), Oran, Algeria.
 E-mail: fatimalabbaoui@yahoo.fr; m.aiboudi@yahoo.fr

