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Abstract. Our work is study the geometry of oscillator groups; they are the only non
commutative simply connected solvable Lie groups which have a biinvariant Lorentzian
metric. The oscillator group has been generalized to one dimension equals 2n>4, and
several aspects of its geometry have been intensively studied, both in differential geometry
and in mathematical physics. In this paper, we find geodesic curves on the oscillator group

G,.9,) of dimension four.
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1. INTRODUCTION

In mathematics, differential geometry is the application of the tools of differential
calculus to the study of geometry. The basic objects of study are the differential varieties, sets
having a sufficient regularity to consider the notion of derivation, and the functions defined on
these manifold. Differential geometry finds its main physical application in the theory of
general relativity where it allows a modeling of a curvature of space-time.

Riemannian geometry is a branch of differential geometry named after the
mathematician Bernhard Riemann, who introduced the founding concept of geometric variety.
It extends the methods of analytical geometry by using local coordinates to carry out the study
of curved spaces on which exist notions of angle and length.

The most notable concepts of Riemannian geometry are the curvature of the studied
space and geodesics, curves solving a shortest path problem on this space. More generally,
Riemannian geometry aims at the local and global study of Riemannian manifolds. In
mathematics, and more precisely in geometry, a Riemannian manifold is a differentiable
manifold having an additional structure (a Riemannian metric) allowing to define the length
of a path between two points of the manifold i.e. the differentiable manifolds equipped with a
Riemannian metric.

Our work is devoted to the study of the Lorentzian geometry of the oscillator group

(G,.9,) of dimension 4. Connected Lie groups that admit a bi-invariant Lorentzian metric

were determined by the first of the authors in [1]. Among them, those that are solvable, non-
commutative, and simply connected are called oscillator groups.

We study here the geometry of these groups and their networks, i.e their discrete sub-
groups co-compact. If G is an oscillator group, its networks determine compact
homogeneous. Lorentz manifolds, on which G acts by isometries.
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Let H,,,, =RxC" be the Heisenberg group and let 2= (4, 4,,...,4,) k be strictly
positive real numbers. Let the additive group R act on H,,,, by the action:

PO, (z))) = (u,(e"'z))).

The group G, (1), a semi-direct product of R by H,, ., following p, is provided with
a bi-invariant Lorentz metric. Here is how it is built:

g=RxRxR*

is the tangent space at the origin. Let us extend the usual scalar product of R* into a
symmetric bilinear form over g so that the plane RxR is hyperbolic and orthogonal to R**.

This form defines an invariant Lorentz metric on the left on G, (1), it is also invariant on the

right because the adjoint operators on g are antisymmetric [2].Groups G, (1) are
characterized [1] by:

Theorem1.1. The groups G, (1) are the only groups of Lie simply related, resolvable and

noncommutative which admit a bi-invariant Lorentz metric.
Since [3-5], the oscillator group has been generalized to a dimension equal to an even

number 2n with n > 2, plus this provides a known example of homogeneous space-time [6].
For n=2, the oscillator group of dimension 4 admits a Lorentzian metric invariant on the
left and on the right (bi-invariant). This bi-invariant metric has been generalized a family g,,
—-1<a<l, invariant Lorentzian metrics on the left. For a = 0, the metric g, become or the

only example of Lorentzian bi-invariant metric [7].

The researchers Giovani and Zaeim extracted three vectors feilds from the oscillator
group, which are: Killing vector feild, Affine vector feild, parallel vector feild (see [7]). And
also Giovani and Zaeim classified the totally geodesic and parallel hypersurfaces of four-
dimensional groups (see [5]).Our work based explicitly on the geodesic curves on the

oscillator group (G,,d,). We will give you a few reminder about geodisie curves.

2. PRELIMINARY RESULT
At the moment we consider on G, a family parametre of left-invariantLorentzian
metrics g, . With respect to coordinates (X, X,,%;,X,), this metric g, is explicitly given by
g, = adx? + 2ax,dx dx, + (L+ax; )dx? +dx? + 2dx,dx, + 2x,dx,dx, +adx’,
with —1<a<l],

Note that for a =0 and 4 =1 we have the bi-invariant metric on the oscillator group
G, [7]. In all other cases, g, is only invariant on the left.

The matrix of the metric g, is given by
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a ax 0 1
A - ax, l+axi 0 x,
0 0 1 0
1 X; 0 a
So
2ot X§ % 0 - azl—l
4 —X, 1 0 O
Al 0 1 0
2z 0 0 &

Levi-Civita connection
Theorem 2.1. Let (M, g) be a pseudo-Riemannian manifold. There is one and only one

torsion-free connection V on M for which g is parallel, that is, Vg =0. This connection is

called the Levi-Civita connection of (M, g).
Unless explicitly stated otherwise, any pseudo-Riemannian manifold will be endowed
with its Levi-Civita connection. To say that it is untwisted means that

V,Y -V, X =[X,Y],

forall X,Y e y(M) (the set of vector fields). For all X,Y,Z € y(M) . This condition is also
called the compatibility condition of V with metric g.

Proposition 2.1. The Levi-Civita connection on a pseudo Riemannian manifold (M, Q)
satisfies the following formula:

29(V,Y,2)=X(9(Y,2))+Y(9(Z, X)) - Z(9(X,Y)) - 9(X,[X,Z])
+g(Y,[Z, XD +9(Z,[X,Y]),

forall X,Y,Z e y(M). This is the Koszul formula.

Christoffel symbols
Using Koszul formula, a simple calculation shows us that, in a map of local

coordinates (X,,...,X,), the christoffel symbols F:‘j are given by

1 0 0 0
1—~k = — km — 0. +——0q. ———a.. ,
ij 2 g (5 _ g]m OX. Qi ox gu)

i j m

forall i, j,k e {1,..,n} where g, = g(£,+) and g" denote the components of the inverse

matrix of (g;) .

Remark 2.1 The condition that V is torsion-free is equivalent to that, for all 1<1, j,k <n,
we have
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r“ =r*

ij jit

The christoffel symbols on (G,,d,)

The Christoffel symbols {I'} }

i iketa” which are not always zero, are given by

3 _ 1,k _ %32 _a

Ip=—%a Ij3=——". I13=5,

1-ax? a
3 1 Ay o A 1
[0 ==, I3 =—5= I3=>" @)

1 - K% 2 13 _ 1
Ta4==2:T34=5:T4="%

Definition 2.1. Let (M,V) be a differentiable manifold endowed with a linear connection.
Let y : lcR—>M beacurveon M and let Y (t) be a vector field tangentto M at y(t),
for t e |, which varies differentiably witht. We say that Y (t) is parallel along (t) if

VoY =0

In local coordinates X, X,,....., X, (m being the dimension of M), if »'(t) :y"(t)axiiy(t)

and Y(t) =Y’ t)<= o’ the condition of parallelism of Y along » is written:
Iy

%Yk(t)Jrrikj Y'(OY!(t)=0, Vtel

where F:‘j are the Christoffel symbols of V .

Definition 2.2.The curve » is said to be a geodesic if the velocity vector of » is parallel
along y (i.e.V,,7'(t)=0), orelse

d27k
dt

i i
dd7t d7t —0, foralli, j,k e{L2,....m}

k
+ Fij

it is a system of second-order ordinary differential equations called the geodesic equations.
Proposition Given a pseudo Riemannian manifold (M,g,V), V being the

Riemannian connection and » acurve on M then » is a geodesic on (M, Q) if and only if

d oL, oL . .
—(—)——=0, foriefl,2,...,.dimM},
dt (axi,) OX e{ }

where L=2g,7"y"! for k, je{L2,..,dimM}, the equations & (£&)—2 =0 are called Euler
equations of the Lagrangian L.
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3. RESULTS AND DISCUSSION

In this section, we write explicitly the equations of the geodesics of the oscillator group G, ,
for the left-invariant Lorentzian metric g, , as well as their resolutions.

Theorem 3.1.Let ¥ : t—> y(t) = (x(V), y(1), 2(t), () be a geodesic curve on the oscillator
group of dimension four (G,,g,) and let (0) = (X,, ¥,.2,) and 7(0) = (%, ¥y, Z,)-
If ac, +w, =0, then, any geodesic on (G,, g,) is written in the form:

X(t)= (yé)z_(zé)z sin(2(a(x, +z,Yg)+W,
(1) 4(a(X6+ZOy(’))+W('))2 (2( U+ 20%) O)t)
(ve) +(z)

2(a(x;+2,¥p)+ W)

+ ((a(x3+zoyg)+w(;)) S+ X+ 2oy |t

) , AN
_(yo) —(a(x0+zoyo)+wg)20y() sin((a(X6+ZOYS)+W5)t)
(a(x+2oYp)+Wp)
Y5+ (a5 + 20Y5) + )2
(2% +20%5) + W5 )
ZsYo

(a(x6+zoy6)+w(;)

!

0% Cos((a(x[) + zoyg)+w(’,)t)

2
0
a(x)+2oY)+Wp

z
+

5c08” ((@(Xg+2,Y0)+Wp )t)+ X, +

and

!

y H ! ’ !
v()= a(xy+ zooy6)+w6 Sm((a(xo " zoy0)+w0)t)

!

z; ' | | )
a(x)+2,Yy)+W, COS((a(Xo + ZOyO)JrWO)t)Jr Y

!

ZO
a(xy+2oY )+ W,

+

!

y ! 1 !
z(t)=- e zooyg)+Wé cos((a(x0 + zoy0)+wo)t)

!

% ,sin((a(xg+zoy(’,)+wg)t)+

1
+ ' ’ L !+ZO’
a(x0 +2,Y0 )+ W,

a(Xy+2,Yp)+W,

w(t) = wot +W,.

If 2+ =0 then, any geodesic on (G,,g,) is written in the form:
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X(t)=— Yo? 0t + Xt + Xy,

y(t) = y0t+y0'
Z(t) = 5t + z,,
W(t)=—a(xy+2Z,Yy)t+W,

Proof: Now let t — y(t) = (x(t), y(t), z(t), w(t)) be a curve on the Oscillator group (G,,9,) .

A direct calculation shows us that » is a geodesic on (G,,9,) if and only if, the
following system is satisfied

x"(t)-az (t)x’(t)z’(t)+(1—a22)y'(t)z'(t)—z(t)z’(t)w1 =0,
"(t)+ax'(t)z'(t)+az
)

(
"()-ax 1)y (1)-az t)( (t))z—wlv'<t>=0’

(t)=wt+w,,

<

(2)

N

=

where W, W, € R.

The first and second equations of the system (2) imply X'+zy'+y'z2'=0. Integrating
by parts, we get

X'=-zy'"+c, ¢ R 3)
Thus (2) reduces to

z(t)(y"(t)+(ac, +w;)z'(t))=0

(t (
y"(t)+(ac, +W) "(t)=0,
0

" (4)
2"(t)-(ac,+w,) y'(t) =0,
w(t)=wt+w,,
From the second equation of the system (4), we deduce
y'=—(ac,+w,)z+c,, ¢, eR. (5)

It follows that
2"+ (ac, +w1)2 z—c,(ac,+w;)=0.

Therefore, assuming that ac, +w, # 0, we show that
C2

z(t) =c, cos((ac, +w, )t)+c,sin((ac, +w, )t)+ e

where ¢,,c, eR.
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On the other hand, by replacing the expression of z(t) in (5) we will have
y'(t) =—c,(ac, +w; )cos((ac, +w, )t)—c, (ac, +w;)sin((ac, +w, )t).

We then have

y(t)=—c,sin((ac, +w,)t)+c, cos((ac, +w )t)+a, a<R.
So (3) becomes

X'(t) = Ac? cos® ((ac, +w, )t)+ Ac] sin® ((ac, +w, )t)+c,c, cos((ac, +w, )t)

+C,C, sin((ac, +w, )t)+24c,c, cos((ac, +w, )t)sin((ac, +w, )t)+c,.
So

2 2 2,2
x(t) :%sin(z(acl +wl)t)+[(acl ) erc“ +cljt

ﬁcos«acl +W1)t)—C3C4 cos’ ((acl +W1)t)+

C,C .
. t),
+ e sin((ac, +w,)t) 8

where S eR.
It remains to determine the constants C,,..,C,,, . Let us then set

7(0)=(% Yor 20, W, ) and ' (0) = (X}, Vi, 20, W)

From the equation (3), we will have ¢, =x, +2zYy,, W(0)=w,=w, andw, =W
Moreover, as
y'(t)=—(ac,+w,)z(t)+c,,
we will have
C, = Yo +(a(X) + 2,V )+ W) Z,.

Moreover, we have
y'(0)=y; =—c;(ac,+w,) and z'(0) =z, =c, (ac, + W, ).

We then have

ZO
a(x)+2oYg)+W,

Yo
a(X; +2Yy) + W

C,=— and c, =

On the other hand, y(0)=Yy,=c,+a and X(0)=X,=— sy —C:Cs+f.
Subsequently,
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z 22
— - and B =X, + —0 -
a(x0+zoy0)+w0 a(x0+zoy0)+w0

a=Y,—
Therefore, when a(x; +2z,y; )+ W, =0, any geodesic on (G,, g, ) will be given by

X(t)z (yé)z_(zé)z

(2 , ' N
4(a(xé+zoy6)+w(,))2 Sln( (a(XO"‘Zoyo)"‘WO) )

(%) +(z)°

2(a(x; +12,Y5)+Wp)

+ ((a(xg+zoyg)+w{))) S+ X+ 2,0 |t

’1\2 ’ ' ! !
Yo) —(al(Xg+2ZoYe)+Wo)Z0Ys . ' ' /
- (a((x('iz y(i)oJr)w')g) : °s|n((a(x0+zoy0)+Wo)t)
0 0Jo 0

!

z

_ 20+ (206 +20%0) + ) 7% cos((a(x +2Ys )+ W )t)

(a(x6+zoy6)+wg)2

2
ZO
PR

a(xy+2z,Yp)+W,

ZyYo
(a(x5+2pYq)+ W)

+

5€08° ((@(X + 2oy + Wy )t) + X, +

and

!

y H ! ’ !
y()= a(xy+ zooy6)+w6 Sm((a(xo " zoy0)+w0)t)

!

Zy , o )
a(X, +2,Y5)+W, cos((a(xo + zoyo)+\/\/0)t)Jr Y,

!

Zy

" a(x; +2,Y )+ W

!

y ! ’ !
0= ey B8 )

!

Z, . ’ ' '
TRERAREY sm((a(x0 + zoy0)+w0)t)+

!

Yo
a(Xy+2,Yp)+W,

+ +2,,

W(t) = wot +W,.

If ac, +w, =0, the system (4) reduces to
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y"(t)=0,
Z"(t) =0,
W(t)=wt+Ww,.
It results
yt)=at+a,, a,a, ek,
z(t)=bt+b,, b,b, eR.
From the equation we show

X(t) :—ai—zblt2 +(c,—ahb, )t+pu, ¢, uell.

It remains to determine the constantsa;,a,,b,b,,c, for the initial conditions
7(0)=(%o, Yo, 2, W, ) and »"(0) = (X5, Y. Zg, W,) . We then have,

X(0) =x, = pand ¢, = Xy + 2,Y,,
y(0) =y, =2, andy'(0) = y, = &,
2(0)=2z,=b, and 2'(0) = z; =h,.
Therefore, when a(x) +2,Y, )+W, =0, any geodesic on (Gl : ga) will be given by
X(t) = —%tz + Xt + X,
y() = Yot + Yo,
Z(t) = 75t + z,,

W(t)=—a(xy+2,Yy )t +W,
4. CONCLUSION

In this work we study the Lorentzian geometry of the oscillator group of dimension 4
and their geodesic curves. This group can be described as a semi-direct product RxH, H
being the three-dimensional Heisenberg group. We found two cases in our solution to the

system which gives us all the geodesic curves on this group (G;,d,).
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