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Abstract. In this paper, we derive some sums involving the r-derangement numbers,
D,.(n) and the generalized hyperharmonic numbers of order r, H} (a) by using the generating
functions and Riordan arrays. For example, for n,r € Z*withn > r,

n-r

; D,(n—1i) (=D
;(_1) "t (nn— i)l! CED

Keywords: sums; generalized harmonic numbers; r-derangement numbers;
generating function.

1. INTRODUCTION

The harmonic numbers are defined by
n

1
Hy=0 and Hn=27 forn > 1.

i=1
There exists integral representation in the form

1
1—x"
anf - dx.

0
Harmonic numbers and generalized harmonic numbers have been studied recently by
many mathematicians [1-8]. In [7], for any « € R* and n € N, the generalized harmonic

numbers H, (a) are defined by
n

1
Hy(a) =0 and Hn(a)=zw forn > 1.

=1

For a = 1, the usual harmonic numbers are H,,(1) = H,, and the generating function of
H,(a)is
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In [8], for the generalized harmonic numbers H,(a), Omir and Bilgin defined the
generalized hyperharmonic numbers of order r, Hj (a)as follows: For r < 0 or n <0,
H}(a) = 0andforn > 1,

n
HT (o) = Z H"'(@) for r =1,

where HY (a) = Tin For a = 1, H},(1) = Hj, are the hyperharmonic numbers of order r. The
generating function of H] (a) is

1 __
(1— )T ZHr(“)x (1.1

The Cauchy numbers of order r, C;; are defined by the generating function to be

(ln(l + x)) Z Cn o (12)

The generalized geometric series are given for positive integers a and b by

b [0 e}

a2 () a3)

n=b

The exponential generating function is

®
%
Il
s
2%

(1.4)

S
I
(=)

Also, these numbers satisfy the recursive formula given by
d,=m-1)(d,.;1 +d,_,) forn=2

with d, = 1,d; = 0 (see sequence A000166 in [9]). The generating function of d,, is given

by _
Z —T (1.5)

The generalized derangement numbers d,, ,,, are introduced by Munarini [10] as
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Z( 1)k m+1lk k)k|

e ” C x™
(1 — x)m+1 = Z) dn,m?
n=

These numbers satisfy the following relation [11]:

and can be generated by

dn,m+1 = dn,m + ndn—l,m+1-

In [12], for 0 < r < n, D,(n) denotes the number of derangement on n + r elements
under the restriction that the first » elements are in disjoint cycles. A closed form formula for
D,.(n) is also given by

n

Dr(n)=Z(.)(n J)'( D™ forn=>7r=>0.

J=r

The r-derangement numbers D,.(n) satisfy the recursive formula
D,(n)=rD,_.,n—1)+Mn-1)D,(n—-2)+(n+r—-1)D,(n—1), n>2,r>0.
with initial conditions
Di(n) =du4q1, D,(r)=r'(r=1) and D,(r+1) =r(r+1)! (r=2).

The generating function of D,.(n) is given by

xre—x ® xn
(1—x)+ Z Dr(m) Ty (1.6)
n=r

Notice that for r = 0, Dy(n) = d,,. The authors obtained many formulas for the r-
derangement numbers. For example, forr > 1,1 <s<rands <n,

n

D, = Y (12 1) Gy De-sn = )

J=s

Recently, using generating functions, there are some works including derangement
numbers by the authors [13-19]. In [19], Qi and Guo established explicit formulas for
derangement numbers and their generating function in terms of Stirling numbers of the second
kind. For example, for positive integer n,

o 1 (1) - SG+ LD
d= ) kL Z(l)()ET(i)(iTl)’

k=1 =0 i=0 l

where Stirling numbers of the second kind S(n, k) can be defined by
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x_1k *® n
%= ZS(n,k));—' for k € {0} UN.
! P !

For n > 2, the Fibonacci numbers are given by
Fo=Fopoq1+Fyp

with F, = 0, F; = 1 and the generating function of these numbers is

ad i Ex™. 1.7)

1—x—x2
n=0

Let F, be the set of all generating functions of the form
fnxn + fn+1xn+1 + fn+2xn+2 + -

where f, # 0. For g(x) = Xps09nx" € Foand f(x) = Ypso fux" € Fy, let 1, be the
coefficient of x™ in gf*. Riordan array [20] is defined by a couple of analytic functions or
formal power series R = (g(x), f(x)) = (), ..., SUch that the generic of R is

ruxe = X" g ) (£ ()", (1.8)

where [x™]f (x) denotes the coefficient of x™ in f(x). From this definition, R = (g(x), f(x))
is an infinite, lower triangular array. An important example of Riordan array is the Pascal
triangle which can be given with the help of xg(x) = f(x) = lex such that

(@) =(=1)-

1
RGN

TR WN R
L.OoOwE
R

—_

Basically, the concept of Riordan array is used in a constructive way to find the
generating function of many combinatorial identities and sums. For any sequence
{a,}ns0 generated by A(x) = Y,s0a,x™, the summation property for Riordan array

(GG, F () = (rnk),, g [3:20.21] i

> ke = ["1gA(F (). (1.9)

k=0

In [15], Duran et al. obtained sums including generalized hyperharmonic numbers and
special numbers. For example, for any positive integers n, r,
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n

> )nl HF (@) = Z( S HI @),

i=0

For F(x) = Yo panx™ and G(x) = Yoo bpx™, the product of these functions is

given by
F(x)G(x) = z A, x™ X z b,x™ = z cpxX™, (1.10)

n=0 n=0 n=0
where ¢, = Y=o Acbn—k-

2. SOME IDENTITIES WITH THE r-DERANGEMENT NUMBERS

In this section, we will give some sums involving the r-derangement numbers, using
the generating functions of these numbers.
Theorem 2.1. For any positive integers n and r, then

n
1 i mET . dy,dy, ... d;
“Dir (" T\ p.(n - _ E Cua ity o Aryy
(n+r)!Z;( yr( i )0, =i+ 1) L Ly
=

ll+lz+"'+lr+1=n

Proof: Using (1.4) and (1.6), we have

L ey (- 1)” o Dy (n +7) "
x e 1—x)r+1 Z (n+r)! X

n=0
and using (1.10), equals to

i

ZZ( 1)i "J{r (n:_r)!Dr(n—i+r)x". 2.1)

n=0 i=0

From (1.5),

e e = g () < () <X ()
xoe 1-x)" Q-2 \1-x 1—x/) 7 \1—x

(r+1)— tlmes
[ee] (o] d
St St 3, e
— l lr+1
Oo— - I2=0 lr+1=0 (2 2)
dy di, diyy '

=) .
= L T

n=0 ll+l2+"'+lr+1=n

By comparing the coefficients on right sides of (2.1) and (2.2), we have the proof.m
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Theorem 2.2. Let n and r be positive integers such that n > r. We have

AN Ty R I G Vi
;( 1)( [ ) m—=0)! (m-n'
Proof: From (1.4), we have
DT L L NTED
Z(n—r)!x =Xx Z Xt =xTe =(1-x) a0 (2.3)

ner "0 et b )' (2.4)
n—i
:;izo( o (") G

and since D,.(n) = 0 for r > n, by comparing the coefficients on right sides of (2.3) and
(2.4), we obtain that for n > r,

< Dr(n—1i) (=)™
;( D (7"1'1) (nn— l)l! (n—nr)V

as claimed.m

Theorem 2.3. Let n and r be positive integers such that n > r. We have

_1l 1n]
S ”(>—Z () (n— ) HZ @D, (0,

i=0 j=r i=r
and

D har, o) = Z D, (DH}H(@).

X o) 0
In(1—= —1)"
e *x" (1(_ xﬁ) = z ( n') x™ X 2 Hy () x™
n;O n—r. n=r
(1)
= > ) o H (@, (2.5)
n=r i=0 '

and by (1.6) and Binomial theorem,
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rln(l—g)_ ln(l—g) e Xy

-0 @-0t1-»™

zm (@ xz K 3 ) e

1-xr

n=0
Z . Hr Ha)D, (D)x™ x Z (:l) (—1)"x™
ZZ C Dn ] J) H[ZH (@)D (D)x™. (2.6)

Thus, by comparing the coefficients on right sides of (2.5) and (2.6), we get the
desired result. Secondly, by (1.10), we have

(1—-x)?r n!
nS0 o=
(=1
= Z T HZT () x™, (2.7)
n=r i=0 ’

and

(1—x)2" (1 — )t (1- x)r+1

= Z HI 1(a) x™ % Z Dn(.n)

Il
N
I\

:

=

H

.

\/
s
/'\
v

(2.8)

Thus, by comparing the coefficients on right sides of (2.7) and (2.8), this completes
the proof. m

Theorem 2.4. Let a, b, n, r be positive integers. Forn > r,

I
-
iP1=

n .
(i)DT‘(l)l
andforn>b+r,

Dr+a(n—b+a)_nr i—b+a—1\D,(n—1i)
(n—»b+a)! _Z< i—b )(n—i)!'

i=b
Proof: From (1.3), (1.4) and (1.6), we have

r

2. () =g = o ZD mE

n=r
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Z Z i! (121(—1)1)' t= %ZZ (rll) Dr(8) 27

n=r i=r n=r i=r

Also, using (1.3) and (1.6), we get

@ Dr+a(n b+ a) xntb—a Y xTtap—x
— Dr+a(n) — y)r+a+1
(n—b+a)! (1-x)

n=b+r n= a+r

xTe ™

(1 — x)a (1—2x)r*t

Y (T ey

n—

%

(- ”*Z*)—i;’:{?

Il
I ||
$M 8%

n ri=b

From here, by comparing the coefficients on both sides, we have the proof. m

Theorem 2.5. Let n and r be positive integers such that n > r. We have

D (n—1)  dy,
Z( 1) (n—z)' C(n=n)

Proof: Observing that

Since () = 0 for k > n and D,.(n) = 0 for r > n, we obtain that for n > r,

dyr D,.(n—1i)
(1)l .z( ()G or

as claimed. m

Theorem 2.6. Let n and r be positive integers such that n > r. We have
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S ()5S ()7 ) e

j=0i=

Proof: With the help of (1.2) and (1.6), we have

X
xr+1e—x 1 xre—x —-a

R A (e

- 3Py e

n=r
o N—r .
(—1)“1 .
n=r i=0
and by (1.2), (1.3) and (1.6), we get
xr+1e—x 1 e—x —g xr

(1—x)r+11n(1_§)__a1—x1n( 1-5a-ar

d, (-1)™1c, > -1
XX a"1n! xnxz<r—1)

I
s

n!
Q;O n n=0 gfr
ny (D" Cdy; n—1y

_ZZ(L) a-nl Xz<r—1>x

n=0 i=0 n=r

o n-r J .

n—j-1\(D"0d

= _—— x™, 2.10

Z Z()( r—1 ) a4 (2.10)

0i=0

S
Il

r

~.
I

By comparing the coefficients on right sides of (2.9) and (2.10), we obtain the claimed
result. m

3. SOME SUMS WITH THE HELP OF RIORDAN ARRAYS

In this section, we will give more sums involving the r-derangement numbers with the
help of Riordan arrays. From (1.6) and (1.8), we get Riordan arrays as

e * x \ _(Dp(n)
(1 —x'1- x) B < n! >n,k20’ (3.1)

e* —x\ ((=1)"Dr(n)
(1 +x'1+ x) B ( n! )n k>0' (3.2)

and
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(e" x )_ (=D)™*kDy(n)
1+x"1+x/ n! ' (3:3)
n,k=0
Using these Riordan arrays and some generating functions, we have following
theorems:

Theorem 3.1. Let n be non-negative integer. Then we have
n
D DD = (=D
k=0

Proof: Choosing the Riordan array in (3.1) and A(x) = ﬁ by (1.9), we have

—-X 1 n _1n _17'1
RO S CIS SR of

k=0

H‘
&
Il
o

as claimed. m

Theorem 3.2. Let n and r be non-negative integers. Then we have

(n+r> 'Zn: Dk(n) =D,.(n+r).

k=0

Proof: Choosing the Riordan array in (3.1) and A(x) = (1 + x)", by (1.9), we have

n
Dk(n) e X A\ e * D.(n+71)
1 = n =
kz_o x]l—x( +1—x) [X](l—x)r+1 (m+nr)’
as claimed. m
When n = r in Theorem 3.2, we have Corollary 3.3.

Corollary 3.3. For non-negative integer n, we have

(ZD n! zn: (Z) D,(n) = D, (2n).

k=0

Theorem 3.4. Let n and r be non-negative integers. Then we have

n

i(—nm (k ‘: T) D, (n) = Z k! (Z) (Z) (3.4)
k=0

k=0

and

Z kil D, (n) = Z(—1)n+kk! (Z) H,. (3.5)
k=1

k=0

Mathematics Section
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Proof: Let us choose the Riordan array in (3.1). Taking A(x) = (1+:)r+1

A(x) = In(1 + x) for (3.5), the proof is similar to the proof of Theorem 3.1. m

for (3.4) and

Theorem 3.5. Let n be non-negative integer. Then we have

zn: D,(n) = zn: 2k d,, (3.6)
k=0 k=0

n (_1)k+1
k!

and

Z(—l)ka(n)Fk = nl Foo 3.7)
k=0

k=0
Proof: From the Riordan array in (3.2), A(x) = i for (3.6) and by (1.7), from the Riordan
array in (3.3), A(x) = 1

1-x—x2

for (3.7), the proof is similar to the proof of Theorem 3.1. m

CONCLUSION

We would like to study some sums involving the generalized derangement numbers
dnm [9,10], using Riordan arrays.
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