ORIGINAL PAPER

ON SUMS WITH THE r-DERANGEMENT NUMBERS

NEŞE ÖMÜR ${ }^{1}$, KÜBRANUR SÜDEMEN ${ }^{1}$, SİBEL KOPARAL 2, ÖMER DURAN ${ }^{1}$

Manuscript received: 17.01.2023; Accepted paper: 12.054.2023;
Published online: 30.06.2023.

Abstract. In this paper, we derive some sums involving the r-derangement numbers, $D_{r}(n)$ and the generalized hyperharmonic numbers of order $r, H_{n}^{r}(\alpha)$ by using the generating functions and Riordan arrays. For example, for $n, r \in \mathbb{Z}^{+}$with $n \geq r$,

$$
\sum_{i=0}^{n-r}(-1)^{i}\binom{r+1}{i} \frac{D_{r}(n-i)}{(n-i)!}=\frac{(-1)^{n-r}}{(n-r)!}
$$

Keywords: sums; generalized harmonic numbers; r-derangement numbers; generating function.

1. INTRODUCTION

The harmonic numbers are defined by

$$
H_{0}=0 \quad \text { and } \quad H_{n}=\sum_{i=1}^{n} \frac{1}{i} \quad \text { for } n \geq 1
$$

There exists integral representation in the form

$$
H_{n}=\int_{0}^{1} \frac{1-x^{n}}{1-x} d x
$$

Harmonic numbers and generalized harmonic numbers have been studied recently by many mathematicians [1-8]. In [7], for any $\alpha \in \mathbb{R}^{+}$and $n \in \mathbb{N}$, the generalized harmonic numbers $H_{n}(\alpha)$ are defined by

$$
H_{0}(\alpha)=0 \quad \text { and } \quad H_{n}(\alpha)=\sum_{i=1}^{n} \frac{1}{i \alpha^{i}} \quad \text { for } n \geq 1
$$

For $\alpha=1$, the usual harmonic numbers are $H_{n}(1)=H_{n}$ and the generating function of $H_{n}(\alpha)$ is

$$
-\frac{\ln \left(1-\frac{x}{\alpha}\right)}{1-x}=\sum_{n=1}^{\infty} H_{n}(\alpha) x^{n}
$$

[^0]In [8], for the generalized harmonic numbers $H_{n}(\alpha)$, Ömür and Bilgin defined the generalized hyperharmonic numbers of order $r, H_{n}^{r}(\alpha)$ as follows: For $r<0$ or $n \leq 0$, $H_{n}^{r}(\alpha)=0$ and for $n \geq 1$,

$$
H_{n}^{r}(\alpha)=\sum_{i=1}^{n} H_{i}^{r-1}(\alpha) \quad \text { for } r \geq 1
$$

where $H_{n}^{0}(\alpha)=\frac{1}{n \alpha^{n}}$. For $\alpha=1, H_{n}^{r}(1)=H_{n}^{r}$ are the hyperharmonic numbers of order r. The generating function of $H_{n}^{r}(\alpha)$ is

$$
\begin{equation*}
-\frac{\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{r}}=\sum_{n=1}^{\infty} H_{n}^{r}(\alpha) x^{n} \tag{1.1}
\end{equation*}
$$

The Cauchy numbers of order r, C_{n}^{r} are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{x}{\ln (1+x)}\right)^{r}=\sum_{n=0}^{\infty} C_{n}^{r} \frac{x^{n}}{n!} \tag{1.2}
\end{equation*}
$$

The generalized geometric series are given for positive integers a and b by

$$
\begin{equation*}
\frac{x^{b}}{(1-x)^{a+1}}=\sum_{n=b}^{\infty}\binom{n+a-b}{a} x^{n} . \tag{1.3}
\end{equation*}
$$

The exponential generating function is

$$
\begin{equation*}
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \tag{1.4}
\end{equation*}
$$

The derangement numbers d_{n} are given by the closed form formula

$$
d_{n}=n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}
$$

Also, these numbers satisfy the recursive formula given by

$$
d_{n}=(n-1)\left(d_{n-1}+d_{n-2}\right) \text { for } n \geq 2
$$

with $d_{0}=1, d_{1}=0$ (see sequence A000166 in [9]). The generating function of d_{n} is given by

$$
\begin{equation*}
\frac{1}{1-x} e^{-x}=\sum_{n=0}^{\infty} d_{n} \frac{x^{n}}{n!} \tag{1.5}
\end{equation*}
$$

The generalized derangement numbers $d_{n, m}$ are introduced by Munarini [10] as

$$
d_{n, m}=\sum_{k=0}^{n}(-1)^{k}\binom{m+n-k}{n-k} \frac{n!}{k!}
$$

and can be generated by

$$
\frac{e^{-x}}{(1-x)^{m+1}}=\sum_{n=0}^{\infty} d_{n, m} \frac{x^{n}}{n!}
$$

These numbers satisfy the following relation [11]:

$$
d_{n, m+1}=d_{n, m}+n d_{n-1, m+1}
$$

In [12], for $0 \leq r \leq n, D_{r}(n)$ denotes the number of derangement on $n+r$ elements under the restriction that the first r elements are in disjoint cycles. A closed form formula for $D_{r}(n)$ is also given by

$$
D_{r}(n)=\sum_{j=r}^{n}\binom{j}{r} \frac{n!}{(n-j)!}(-1)^{n-j} \quad \text { for } n \geq r \geq 0
$$

The r-derangement numbers $D_{r}(n)$ satisfy the recursive formula

$$
D_{r}(n)=r D_{r-1}(n-1)+(n-1) D_{r}(n-2)+(n+r-1) D_{r}(n-1), n>2, r>0 .
$$

with initial conditions

$$
D_{1}(n)=d_{n+1}, \quad D_{r}(r)=r!(r \geq 1) \text { and } D_{r}(r+1)=r(r+1)!\quad(r \geq 2)
$$

The generating function of $D_{r}(n)$ is given by

$$
\begin{equation*}
\frac{x^{r} e^{-x}}{(1-x)^{r+1}}=\sum_{n=r}^{\infty} D_{r}(n) \frac{x^{n}}{n!} \tag{1.6}
\end{equation*}
$$

Notice that for $r=0, D_{0}(n)=d_{n}$. The authors obtained many formulas for the r derangement numbers. For example, for $r \geq 1,1 \leq s \leq r$ and $s \leq n$,

$$
D_{r}(n)=\sum_{j=s}^{n}\binom{j-1}{s-1} \frac{n!}{(n-j)!} D_{r-s}(n-j)
$$

Recently, using generating functions, there are some works including derangement numbers by the authors [13-19]. In [19], Qi and Guo established explicit formulas for derangement numbers and their generating function in terms of Stirling numbers of the second kind. For example, for positive integer n,

$$
d_{n}=\sum_{k=1}^{n} k!k^{n-k}\binom{n}{k} \sum_{l=0}^{k}(-1)^{l}\binom{k}{l} \sum_{i=0}^{n-k} \frac{(-1)^{i}}{k^{i}}\binom{n-k}{i} \frac{S(i+l, l)}{\binom{i+l}{l}}
$$

where Stirling numbers of the second kind $S(n, k)$ can be defined by

$$
\frac{\left(e^{x}-1\right)^{k}}{k!}=\sum_{n=k}^{\infty} S(n, k) \frac{x^{n}}{n!} \text { for } k \in\{0\} \cup \mathbb{N} .
$$

For $n \geq 2$, the Fibonacci numbers are given by

$$
F_{n}=F_{n-1}+F_{n-2}
$$

with $F_{0}=0, F_{1}=1$ and the generating function of these numbers is

$$
\begin{equation*}
\frac{x}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n} x^{n} \tag{1.7}
\end{equation*}
$$

Let \mathcal{F}_{n} be the set of all generating functions of the form

$$
f_{n} x^{n}+f_{n+1} x^{n+1}+f_{n+2} x^{n+2}+\cdots,
$$

where $f_{n} \neq 0$. For $g(x)=\sum_{n \geq 0} g_{n} x^{n} \in \mathcal{F}_{0}$ and $f(x)=\sum_{n \geq 0} f_{n} x^{n} \in \mathcal{F}_{1}$, let $r_{n, k}$ be the coefficient of x^{n} in $g f^{k}$. Riordan array [20] is defined by a couple of analytic functions or formal power series $R=(g(x), f(x))=\left(r_{n, k}\right)_{n, k \geq 0}$, such that the generic of R is

$$
\begin{equation*}
r_{n, k}=\left[x^{n}\right] g(x)(f(x))^{k} \tag{1.8}
\end{equation*}
$$

where $\left[x^{n}\right] f(x)$ denotes the coefficient of x^{n} in $f(x)$. From this definition, $R=(g(x), f(x))$ is an infinite, lower triangular array. An important example of Riordan array is the Pascal triangle which can be given with the help of $x g(x)=f(x)=\frac{x}{1-x}$ such that

$$
\left(\binom{n}{k}\right)_{n, k \geq 0}=\left(\frac{1}{1-x}, \frac{x}{1-x}\right)=\left[\begin{array}{ccccccc}
1 & & & & & \\
1 & 1 & & & & \\
1 & 2 & 1 & & & \\
1 & 3 & 3 & 1 & & \\
1 & 4 & 6 & 4 & 1 & \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Basically, the concept of Riordan array is used in a constructive way to find the generating function of many combinatorial identities and sums. For any sequence $\left\{a_{n}\right\}_{n \geq 0}$ generated by $A(x)=\sum_{n \geq 0} a_{n} x^{n}$, the summation property for Riordan array $(g(x), f(x))=\left(r_{n, k}\right)_{n, k \geq 0}[3,20,21]$ is

$$
\begin{equation*}
\sum_{k=0}^{n} r_{n, k} a_{k}=\left[x^{n}\right] g(x) A(f(x)) \tag{1.9}
\end{equation*}
$$

In [15], Duran et al. obtained sums including generalized hyperharmonic numbers and special numbers. For example, for any positive integers n, r,

$$
\sum_{i=0}^{n} \frac{(-1)^{n-i}}{(n-i)!} H_{i}^{r}(\alpha)=\sum_{i=0}^{n} \frac{d_{n-i}}{(n-i)!} H_{i}^{r-1}(\alpha) .
$$

For $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $G(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$, the product of these functions is given by

$$
\begin{equation*}
F(x) G(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \times \sum_{n=0}^{\infty} b_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} x^{n} \tag{1.10}
\end{equation*}
$$

where $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}$.

2. SOME IDENTITIES WITH THE r-DERANGEMENT NUMBERS

In this section, we will give some sums involving the r-derangement numbers, using the generating functions of these numbers.

Theorem 2.1. For any positive integers n and r, then

$$
\frac{1}{(n+r)!} \sum_{i=0}^{n}(-1)^{i} r^{i}\binom{n+r}{i} D_{r}(n-i+r)=\sum_{l_{1}+l_{2}+\cdots+l_{r+1}=n} \frac{d_{l_{1}} d_{l_{2}} \ldots d_{l_{r+1}}}{l_{1}!l_{2}!\ldots l_{r+1}!} .
$$

Proof: Using (1.4) and (1.6), we have

$$
x^{-r} e^{-r x} \frac{x^{r} e^{-x}}{(1-x)^{r+1}}=\sum_{n=0}^{\infty} \frac{(-1)^{n} r^{n}}{n!} x^{n} \times \sum_{n=0}^{\infty} \frac{D_{r}(n+r)}{(n+r)!} x^{n}
$$

and using (1.10), equals to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \sum_{i=0}^{n}(-1)^{i}\binom{n+r}{i} \frac{r^{i}}{(n+r)!} D_{r}(n-i+r) x^{n} \tag{2.1}
\end{equation*}
$$

From (1.5),

$$
\begin{align*}
x^{-r} e^{-r x} \frac{x^{r} e^{-x}}{(1-x)^{r+1}} & =\frac{e^{-(r+1) x}}{(1-x)^{r+1}}=\underbrace{(r+1) \text {-times }}_{\left(\frac{e^{-x}}{1-x}\right) \times\left(\frac{e^{-x}}{1-x}\right) \times \ldots \times\left(\frac{e^{-x}}{1-x}\right)} \\
& =\sum_{l_{1}=0}^{\infty} \frac{d_{l_{1}}}{l_{1}!} x^{l_{1}} \times \sum_{l_{2}=0}^{\infty} \frac{d_{l_{2}}}{l_{2}!} x^{l_{2}} \times \ldots \times \sum_{l_{r+1}=0}^{\infty} \frac{d_{l_{r+1}}}{l_{r+1}!} x^{l_{r+1}} \\
& =\sum_{n=0}^{\infty} \sum_{l_{1}+l_{2}+\cdots+l_{r+1}=n}^{\infty} \frac{d_{l_{1}}}{l_{1}!} \frac{d_{l_{2}}}{l_{2}!} \cdots \frac{d_{l_{r+1}}}{l_{r+1}!} x^{n} . \tag{2.2}
\end{align*}
$$

By comparing the coefficients on right sides of (2.1) and (2.2), we have the proof.

Theorem 2.2. Let n and r be positive integers such that $n \geq r$. We have

$$
\sum_{i=0}^{n-r}(-1)^{i}\binom{r+1}{i} \frac{D_{r}(n-i)}{(n-i)!}=\frac{(-1)^{n-r}}{(n-r)!}
$$

Proof: From (1.4), we have

$$
\begin{equation*}
\sum_{n=r}^{\infty} \frac{(-1)^{n-r}}{(n-r)!} x^{n}=x^{r} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}=x^{r} e^{-x}=(1-x)^{r+1} \frac{x^{r} e^{-x}}{(1-x)^{r+1}}, \tag{2.3}
\end{equation*}
$$

and by (1.6) and Binomial theorem,

$$
\begin{align*}
\sum_{n=r}^{\infty} \frac{(-1)^{n-r}}{(n-r)!} x^{n} & =\sum_{n=0}^{\infty}(-1)^{n}\binom{r+1}{n} x^{n} \times \sum_{n=r}^{\infty} \frac{D_{r}(n)}{n!} x^{n} \tag{2.4}\\
& =\sum_{n=r}^{\infty} \sum_{i=0}^{n-r}(-1)^{i}\binom{r+1}{i} \frac{D_{r}(n-i)}{(n-i)!} x^{n}
\end{align*}
$$

and since $D_{r}(n)=0$ for $r>n$, by comparing the coefficients on right sides of (2.3) and (2.4), we obtain that for $n \geq r$,

$$
\sum_{i=0}^{n-r}(-1)^{i}\binom{r+1}{i} \frac{D_{r}(n-i)}{(n-i)!}=\frac{(-1)^{n-r}}{(n-r)!}
$$

as claimed.
Theorem 2.3. Let n and r be positive integers such that $n \geq r$. We have

$$
\sum_{i=0}^{n-r} \frac{(-1)^{i}}{i!} H_{n-r-i}^{r}(\alpha)=\sum_{j=r}^{n} \sum_{i=r}^{j} \frac{(-1)^{n-j}}{i!}\binom{r}{n-j} H_{j-i}^{r-1}(\alpha) D_{r}(i)
$$

and

$$
\sum_{i=0}^{n-r} \frac{(-1)^{i}}{i!} H_{n-r-i}^{2 r}(\alpha)=\sum_{i=r}^{n} \frac{1}{i!} D_{r}(i) H_{n-i}^{r-1}(\alpha) .
$$

Proof: Firstly, from (1.1) and (1.4), we have

$$
\begin{align*}
-e^{-x} x^{r} \frac{\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{r}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \times \sum_{n=r}^{\infty} H_{n-r}^{r}(\alpha) x^{n} \\
& =\sum_{n=r}^{\infty} \sum_{i=0}^{n-r} \frac{(-1)^{i}}{i!} H_{n-r-i}^{r}(\alpha) x^{n}, \tag{2.5}
\end{align*}
$$

and by (1.6) and Binomial theorem,

$$
\begin{align*}
-e^{-x} x^{r} \frac{\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{r}} & =-\frac{\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{r-1}} \frac{e^{-x} x^{r}}{(1-x)^{r+1}}(1-x)^{r} \\
& =\sum_{n=0}^{\infty} H_{n}^{r-1}(\alpha) x^{n} \times \sum_{n=r}^{\infty} \frac{D_{r}(n)}{n!} x^{n} \times \sum_{n=0}^{\infty}\binom{r}{n}(-x)^{n} \\
& =\sum_{n=r}^{\infty} \sum_{i=r}^{n} \frac{1}{i!} H_{n-i}^{r-1}(\alpha) D_{r}(i) x^{n} \times \sum_{n=0}^{\infty}\binom{r}{n}(-1)^{n} x^{n} \\
& =\sum_{n=r}^{\infty} \sum_{j=r}^{n} \sum_{i=r}^{j} \frac{(-1)^{n-j}}{i!}\binom{r}{n-j} H_{j-i}^{r-1}(\alpha) D_{r}(i) x^{n} \tag{2.6}
\end{align*}
$$

Thus, by comparing the coefficients on right sides of (2.5) and (2.6), we get the desired result. Secondly, by (1.10), we have

$$
\begin{align*}
-e^{-x} x^{r} \frac{\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{2 r}} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \times \sum_{n=r}^{\infty} H_{n-r}^{2 r}(\alpha) x^{n} \\
& =\sum_{n=r}^{\infty} \sum_{i=0}^{n-r} \frac{(-1)^{i}}{i!} H_{n-r-i}^{2 r}(\alpha) x^{n} \tag{2.7}
\end{align*}
$$

and

$$
\begin{align*}
-e^{-x} x^{r} \frac{\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{2 r}} & =\frac{-\ln \left(1-\frac{x}{\alpha}\right)}{(1-x)^{r-1}} \frac{-e^{-x} x^{r}}{(1-x)^{r+1}} \\
& =\sum_{n=0}^{\infty} H_{n}^{r-1}(\alpha) x^{n} \times \sum_{n=r}^{\infty} \frac{D_{r}(n)}{n!} x^{n} \\
& =\sum_{n=r}^{\infty} \sum_{i=r}^{n} H_{n-i}^{r-1}(\alpha) \frac{D_{r}(i)}{i!} x^{n} . \tag{2.8}
\end{align*}
$$

Thus, by comparing the coefficients on right sides of (2.7) and (2.8), this completes the proof.

Theorem 2.4. Let a, b, n, r be positive integers. For $n \geq r$,

$$
\binom{n}{r} n!=\sum_{i=r}^{n}\binom{n}{i} D_{r}(i)
$$

and for $n \geq b+r$,

$$
\frac{D_{r+a}(n-b+a)}{(n-b+a)!}=\sum_{i=b}^{n-r}\binom{i-b+a-1}{i-b} \frac{D_{r}(n-i)}{(n-i)!}
$$

Proof: From (1.3), (1.4) and (1.6), we have

$$
\sum_{n=r}^{\infty}\binom{n}{r} x^{n}=\frac{x^{r}}{(1-x)^{r+1}}=\frac{x^{r} e^{-x}}{(1-x)^{r+1}} e^{x}=\sum_{n=r}^{\infty} D_{r}(n) \frac{x^{n}}{n!} \times \sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
=\sum_{n=r}^{\infty} \sum_{i=r}^{n} \frac{D_{r}(i)}{i!(n-i)!} x^{n}=\frac{1}{n!} \sum_{n=r}^{\infty} \sum_{i=r}^{n}\binom{n}{i} D_{r}(i) x^{n} .
$$

Also, using (1.3) and (1.6), we get

$$
\begin{aligned}
\sum_{n=b+r}^{\infty} \frac{D_{r+a}(n-b+a)}{(n-b+a)!} x^{n} & =\sum_{n=a+r}^{\infty} D_{r+a}(n) \frac{x^{n+b-a}}{n!}=x^{b-a} \frac{x^{r+a} e^{-x}}{(1-x)^{r+a+1}} \\
& =\frac{x^{b}}{(1-x)^{a}} \frac{x^{r} e^{-x}}{(1-x)^{r+1}} \\
& =\sum_{n=b}^{\infty}\binom{n-b+a-1}{n-b} x^{n} \times \sum_{n=r}^{\infty} D_{r}(n) \frac{x^{n}}{n!} \\
& =\sum_{n=b+r}^{\infty} \sum_{i=b}^{n-r}\binom{i-b+a-1}{i-b} \frac{D_{r}(n-i)}{(n-i)!} x^{n}
\end{aligned}
$$

From here, by comparing the coefficients on both sides, we have the proof.
Theorem 2.5. Let n and r be positive integers such that $n \geq r$. We have

$$
\sum_{i=0}^{n}(-1)^{i}\binom{r}{i} \frac{D_{r}(n-i)}{(n-i)!}=\frac{d_{n-r}}{(n-r)!}
$$

Proof: Observing that

$$
\begin{aligned}
\sum_{n=r}^{\infty} d_{n-r} \frac{x^{n}}{(n-r)!} & =x^{r} \sum_{n=0}^{\infty} d_{n} \frac{x^{n}}{n!} \\
& =x^{r} \frac{e^{-x}}{1-x}=(1-x)^{r} \frac{x^{r} e^{-x}}{(1-x)^{r+1}} \\
& =\sum_{n=0}^{\infty}(-1)^{n}\binom{r}{n} x^{n} \times \sum_{n=r}^{\infty} D_{r}(n) \frac{x^{n}}{n!} \\
& =\sum_{n=r}^{\infty} \sum_{i=0}^{n-r}(-1)^{i}\binom{r}{i} \frac{D_{r}(n-i)}{(n-i)!} x^{n}
\end{aligned}
$$

Since $\binom{n}{k}=0$ for $k>n$ and $D_{r}(n)=0$ for $r>n$, we obtain that for $n \geq r$,

$$
\frac{d_{n-r}}{(n-r)!}=\sum_{i=0}^{n}(-1)^{i}\binom{r}{i} \frac{D_{r}(n-i)}{(n-i)!}
$$

as claimed.
Theorem 2.6. Let n and r be positive integers such that $n \geq r$. We have

$$
\frac{1}{n!} \sum_{i=0}^{n-r}(-1)^{i}\binom{n}{i} \frac{D_{r}(n-i) C_{i}}{\alpha^{i}}=\sum_{j=0}^{n} \sum_{i=0}^{j}(-1)^{j}\binom{j}{i}\binom{n-j-i}{r-1} \frac{C_{i} d_{j-i}}{\alpha^{i} j!} .
$$

Proof: With the help of (1.2) and (1.6), we have

$$
\begin{align*}
\frac{x^{r+1} e^{-x}}{(1-x)^{r+1}} \frac{1}{\ln \left(1-\frac{x}{\alpha}\right)} & =-\alpha \frac{x^{r} e^{-x}}{(1-x)^{r+1}} \frac{-\frac{x}{\alpha}}{\ln \left(1-\frac{x}{\alpha}\right)} \\
& =\sum_{n=r}^{\infty} \frac{D_{r}(n)}{n!} x^{n} \times \sum_{n=0}^{\infty}(-1)^{n-1} \frac{C_{n}}{\alpha^{n-1} n!} x^{n} \\
& =\sum_{n=r}^{\infty} \sum_{i=0}^{n-r} \frac{(-1)^{i-1}}{\alpha^{i-1} n!}\binom{n}{i} D_{r}(n-i) C_{i} x^{n}, \tag{2.9}
\end{align*}
$$

and by (1.2), (1.3) and (1.6), we get

$$
\begin{align*}
\frac{x^{r+1} e^{-x}}{(1-x)^{r+1}} \frac{1}{\ln \left(1-\frac{x}{\alpha}\right)} & =-\alpha \frac{e^{-x}}{1-x} \frac{-\frac{x}{\alpha}}{\ln \left(1-\frac{x}{\alpha}\right)} \frac{x^{r}}{(1-x)^{r}} \\
& =\sum_{n=0}^{\infty} \frac{d_{n}}{n!} x^{n} \times \sum_{n=0}^{\infty} \frac{(-1)^{n-1} C_{n}}{\alpha^{n-1} n!} x^{n} \times \sum_{n=r}^{\infty}\binom{n-1}{r-1} x^{n} \\
& =\sum_{n=0}^{\infty} \sum_{i=0}^{n}\binom{n}{i} \frac{(-1)^{i-1} C_{i} d_{n-i}}{\alpha^{i-1} n!} x^{n} \times \sum_{n=r}^{\infty}\binom{n-1}{r-1} x^{n} \\
& =\sum_{n=r}^{\infty} \sum_{j=0}^{n-r} \sum_{i=0}^{j}\binom{j}{i}\binom{n-j-1}{r-1} \frac{(-1)^{i-1} C_{i} d_{j-i}}{\alpha^{i-1} j!} x^{n} \tag{2.10}
\end{align*}
$$

By comparing the coefficients on right sides of (2.9) and (2.10), we obtain the claimed result.

3. SOME SUMS WITH THE HELP OF RIORDAN ARRAYS

In this section, we will give more sums involving the r-derangement numbers with the help of Riordan arrays. From (1.6) and (1.8), we get Riordan arrays as

$$
\begin{gather*}
\left(\frac{e^{-x}}{1-x}, \frac{x}{1-x}\right)=\left(\frac{D_{k}(n)}{n!}\right)_{n, k \geq 0} \tag{3.1}\\
\left(\frac{e^{x}}{1+x}, \frac{-x}{1+x}\right)=\left(\frac{(-1)^{n} D_{k}(n)}{n!}\right)_{n, k \geq 0} \tag{3.2}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(\frac{e^{x}}{1+x}, \frac{x}{1+x}\right)=\left(\frac{(-1)^{n+k} D_{k}(n)}{n!}\right)_{n, k \geq 0} \tag{3.3}
\end{equation*}
$$

Using these Riordan arrays and some generating functions, we have following theorems:

Theorem 3.1. Let n be non-negative integer. Then we have

$$
\sum_{k=0}^{n}(-1)^{k} D_{k}(n)=(-1)^{n}
$$

Proof: Choosing the Riordan array in (3.1) and $A(x)=\frac{1}{1+x}$, by (1.9), we have

$$
\sum_{k=0}^{n} \frac{D_{k}(n)}{n!}(-1)^{k}=\left[x^{n}\right] \frac{e^{-x}}{1-x} \frac{1}{1+\frac{x}{1-x}}=\left[x^{n}\right] e^{-x}=\left[x^{n}\right] \sum_{k=0}^{n} \frac{(-1)^{n}}{n!} x^{n}=\frac{(-1)^{n}}{n!}
$$

as claimed.
Theorem 3.2. Let n and r be non-negative integers. Then we have

$$
\binom{n+r}{r} r!\sum_{k=0}^{n}\binom{r}{k} D_{k}(n)=D_{r}(n+r)
$$

Proof: Choosing the Riordan array in (3.1) and $A(x)=(1+x)^{r}$, by (1.9), we have

$$
\sum_{k=0}^{n}\binom{r}{k} \frac{D_{k}(n)}{n!}=\left[x^{n}\right] \frac{e^{-x}}{1-x}\left(1+\frac{x}{1-x}\right)^{r}=\left[x^{n}\right] \frac{e^{-x}}{(1-x)^{r+1}}=\frac{D_{r}(n+r)}{(n+r)!}
$$

as claimed.
When $n=r$ in Theorem 3.2, we have Corollary 3.3.
Corollary 3.3. For non-negative integer n, we have

$$
\binom{2 n}{n} n!\sum_{k=0}^{n}\binom{n}{k} D_{k}(n)=D_{n}(2 n)
$$

Theorem 3.4. Let n and r be non-negative integers. Then we have

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{n+k}\binom{k+r}{r} D_{k}(n)=\sum_{k=0}^{n} k!\binom{n}{k}\binom{r}{k} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k} D_{k}(n)=\sum_{k=1}^{n}(-1)^{n+k} k!\binom{n}{k} H_{k} \tag{3.5}
\end{equation*}
$$

Proof: Let us choose the Riordan array in (3.1). Taking $A(x)=\frac{1}{(1+x)^{r+1}}$ for (3.4) and $A(x)=\ln (1+x)$ for (3.5), the proof is similar to the proof of Theorem 3.1.

Theorem 3.5. Let n be non-negative integer. Then we have

$$
\begin{equation*}
\sum_{k=0}^{n} D_{k}(n)=\sum_{k=0}^{n} 2^{k} d_{k} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k} D_{k}(n) F_{k}=n!\sum_{k=0}^{n} \frac{(-1)^{k+1}}{k!} F_{n-k} \tag{3.7}
\end{equation*}
$$

Proof: From the Riordan array in (3.2), $A(x)=\frac{1}{1-x}$ for (3.6) and by (1.7), from the Riordan array in (3.3), $A(x)=\frac{1}{1-x-x^{2}}$ for (3.7), the proof is similar to the proof of Theorem 3.1.

CONCLUSION

We would like to study some sums involving the generalized derangement numbers $d_{n, m}[9,10]$, using Riordan arrays.

Acknowledgments: The authors are sincerely grateful to the two anonymous referees for their careful reading and valuable suggestions.

REFERENCES

[1] Benjamin, A.T., Gaebler, D., Gaebler, B., Jurnalul electronic de combinatorie, 3, 1, 2013.
[2] Benjamin, A.T., Preston, G.O., Quinn J.J., Mathematics Magazine, 75, 95, 2002.
[3] Cheon, G.S., El-Mikkawy, M.E.A., Journal of Number Theory, 128(2), 413, 2008.
[4] Ömür, N., Koparal, S., Asian-European Journal of Mathematics, 11(3), 1850045, 2018.
[5] Santmyer, J.M., Discrete Mathematics, 171(1-3), 229, 1997.
[6] Dağlı, M.C., Annales Polonici Mathematici, 129, 17, 2022.
[7] Genčev, M., Mathematica Slovaca, 61(2), 215, 2011.
[8] Ömür, N., Bilgin, G., Advances and Applications in Mathematical Sciences, 17(9), 617, 2018.
[9] Sloane, N.J.A., On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[10] Munarini, E., Online Journal of Analytic Combinatorics, 14, 20, 2019.
[11] Dağlı, M.C., Qi, F., Results in Nonlinear Analysis, 5(2), 1, 2022.
[12] Wang, C., Miska, P., Mezo, I., Discrete Mathematics, 340, 1681, 2017.
[13] Dattoli, G., Licciardi, S., Sabia, E., Srivastava, H.M., Mathematics, 7(7), 577, 2019.
[14] Dattoli, G., Srivastava, H.M., Applied Mathematics Letters, 21(7), 686, 2008.
[15] Duran, Ö., Ömür, N., Koparal, S., Miskolc Mathematical Notes, 21(2), 791, 2020.
[16] Kwon, H.I., Jang, G.W., Kim, T., Advanced Studies in Contemporary Mathematics, 28(1), 73, 2018.
[17] Qi, F., Zhao, J.L. Guo, B.N., Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 112, 933, 2018.
[18] Sofo, A., Srivastava, H.M., The Ramanujan Journal, 25(1), 93, 2011.
[19] Qi, F., Guo, B.N., Journal of Nonlinear Functional Analysis, Article ID 45, 2016.
[20] Shapiro, L.W., Getu, S., Woan, W.J., Woodson, L.C., Discrete Applied Mathematics, 34(1-3), 229, 1991.
[21] Sprugnoli, R., Discrete Mathematics, 132(1-3), 267, 1994.

[^0]: ${ }^{1}$ University of Kocaeli, Faculty of Art and Science, Department of Mathematics, 41380 Kocaeli, Turkey.
 E-mail: neseomur@gmail.com; kubranursudemen@ hotmail.com; omer20841@gmail.com.
 ${ }^{2}$ University of Bursa Uludağ, Faculty of Art and Science, Department of Mathematics, 16059 Bursa, Turkey.
 E-mail: sibelkoparal@uludag.edu.tr.

