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Abstract. There are many common combination methods for solving fractional 

differential equations. In this work, we propose a new technique called Adomian 

decomposition transform method (ADTM) in order to provide a new approximate series 

solution of fractional order Bratu-type differential equations. The fractional order derivative 

is described in the Caputo sense. The ADTM is a combination of two powerful methods, the 

Jafari transform method and Adomian decomposition method. For accelerating the 

convergence of ADTM when used for these equations, we replace the nonlinear terms by their 

Taylor expansion. To demonstrate the efficiency and validity of the proposed method, four 

numerical examples are presented and we compare our obtained results with the analytical 

results. Finally, the numerical results obtained are represented graphically using MATLAB 

software. 

Keywords: Bratu-type differential equation; Caputo fractional derivative; Jafari 

transform; Adomian decomposition method; approximate series solution. 

 

 

1. INTRODUCTION  

 

 

The Batu-type equations is one of the important differential equations in the modeling 

of many chemical and physical processes in science and engineering, as it is also used in a 

large variety of applied fields, such as modeling thermal reaction process in combustible non-

deformable materials, including the solid fuel ignition model, the electrospinning process for 

production of ultra-fine polymer fibers, modeling some chemical reaction-diffusion, questions 

in geometry and relativity about the Chandrasekhar model, radiative heat transfer, and 

nanotechnology [1-5]. 

In the last few decades, fractional order differential equations have contributed many 

significant roles in various branches of mathematics, science and engineering for an instance, 

in physics, chemistry, astrophysics, electrodynamics, viscoelasticity, aerodynamics, control 

theory, financial models, quantum mechanics, and other applied sciences. In all these 

numerous applications, it is essential to obtain exact or in most cases approximate solutions of 

these fractional order differential equations which are generally more complex to calculate 

than the classical type, because the operators are defined by integral. 

Nowadays, many authors have proposed and developed numerical and analytical 

techniques for fractional order differential equations, which are: the variational iteration 

transform method (VITM) [6], Sumudu Adomian decomposition method (SADM) [7], 

homotopy perturbation transform method (HPTM) [8], conformable fractional differential 
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transform method (CFDTM) [9], modified homotopy analysis method (MHAM) [10], natural 

reduced differential transform method (NRDTM) [11], Exp-function Method (EFM) [12], and 

so on. 

The main objective of the present paper is to propose a new technique to accelerate the 

convergence of the solution of the fractional order Bratu type differential equation, which can 

be formally determined by an approximate analytical method known as the Adomian 

decomposition transform method (ADTM). 

The fractional order Bratu type differential equation is given by 

 

𝐷𝛼𝜓(𝑡) + 𝜆 exp(𝜓(𝑡)) = 0, (1.1) 

 

subject to the initial conditions 

 

𝜓(0) = 𝐶0, 𝜓′(𝑡) = 𝐶1,  (1.2) 

 

where 0 < 𝜆 < 1, 𝜆 ∈ ℝ and 𝐷𝛼 is the Caputo fractional derivative operator of order 𝛼 with 

1 < 𝛼 ≤ 2, defined as 

 

𝐷𝛼𝜓(𝑡) =
1

Γ(𝑛 − 𝛼)
∫  
𝑡

0

(𝑡 − 𝜏)𝑛−𝛼−1𝜓(𝑛)(𝜏)𝑑𝜏, (1.3) 

 

for 𝑛 − 1 < 𝛼 ≤ 𝑛 and 𝑛 ∈ ℕ. 

This paper is arranged as follows: In Section 1, we give an introduction and a review 

of the literature. In Section 2, we present our main results. In Sections 3 and 4, we explain the 

fundamental theorem of ADTM to solve the fractional order Bratu-type differential equations. 

Four numerical examples are provided in Section 5, to show the simplicity, efficiency and 

applicability of the proposed method. Finally, in Section 6, we give a conclusion of this work. 

 

  

2. MAIN RESULTS 

 

 

Recently, Hossein Jafari defined and developed a new general integral transform [13] 

called Jafari transform, which is applied to solve ordinary and partial differential equations, as 

follows 

𝕁[𝜓(𝑡)] = 𝒥(𝑠) = 𝑝(𝑠)∫  
∞

0

𝜓(𝑡)exp(−𝑞(𝑠)𝑡)𝑑𝑡,  (2.1) 

                         

where 𝒥(𝑠) denotes the Jafari transform of the function 𝜓(𝑡) and 𝑝(𝑠) ≠ 0, 𝑞(𝑠) are positive 

real functions. This section presents our main results related to the Jafari transform of the 

Caputo fractional derivative.  

 

Theorem 2.1. If  𝒥(𝑠) is the Jafari transform of the function 𝜓(𝑡), then the Jafari transform of 

Riemann-Liouville fractional integral of order 𝛼 > 0, is 

 

 𝕁[𝐼𝛼𝜓(𝑡)] =
1

𝑞𝛼(𝑠)
 𝒥(𝑠). (2.2) 

                         



New Technique to Accelerate the Convergence of ... Ali Khalouta                                                                   

ISSN: 1844 – 9581 Mathematics Section 

499 

Proof: The Riemann-Liouville fractional integral for the function 𝜓(𝑡) defined by [14], can 

be expressed as the convolution 

 

𝐼𝛼𝜓(𝑡) =
1

Γ(𝛼)
 𝑡𝛼−1 ∗ 𝜓(𝑡). (2.3) 

                         

By applying, the Jafari transform to both sides of the equation (2.3), we get 

 

𝕁[𝐼𝛼𝜓(𝑡)]  = 𝕁 [
1

Γ(𝛼)
 𝑡𝛼−1 ∗ 𝜓(𝑡)] =

1

𝑝(𝑠)
 𝕁 [
𝑡𝛼−1

Γ(𝛼)
] 𝕁[𝜓(𝑡)] 

 

=
1

𝑝(𝑠)

𝑝(𝑠)

𝑞𝛼(𝑠)
 𝒥(𝑠)  =

1

𝑞𝛼(𝑠)
 𝒥(𝑠). 

(2.4) 

                         

            The proof is complete. 

 

Theorem 2.2. If 𝑛 ∈ ℤ+ where 𝑛 − 1 < 𝛼 ≤ 𝑛 and 𝒥(𝑠) be the Jafari transform of the 

function 𝜓(𝑡), then, the Jafari transform of the Caputo fractional derivative of order 𝛼 > 0, is 

 

 𝕁[𝐷𝛼𝜓(𝑡)] = 𝑞𝛼(𝑠) 𝒥(𝑠) − 𝑝(𝑠) ∑𝑞𝛼−1−𝑘(𝑠)

𝑛−1

𝑘=0

𝜓(𝑘)(0). (2.5) 

                         

Proof: We put 

𝑣(𝑡) = 𝜓(𝑛)(𝑡). (2.6) 

                         

Then, the Caputo fractional derivative defined by (1.3), can be expressed as follows 

 

𝐷𝛼𝜓(𝑡) =
1

Γ(𝑛 − 𝛼)
∫  
𝑡

0

(𝑡 − 𝜏)𝑛−𝛼−1𝜓(𝑛)(𝜏)𝑑𝜏  

 

=
1

Γ(𝑛 − 𝛼)
∫  
𝑡

0

(𝑡 − 𝜏)𝑛−𝛼−1𝑣(𝜏)𝑑𝜏 

 

= 𝐼𝑛−𝛼𝑣(𝑡), 

(2.7) 

 

Applying the Jafari transform on both sides of equation (2.7) and using the Theorem 

2.1, we get 

𝕁[𝐷𝛼𝜓(𝑡)]  = 𝕁[𝐼𝑛−𝛼𝑣(𝑡)] =
1

𝑞𝑛−𝛼(𝑠)
 𝒱(𝑠), (2.8) 

                         

where 𝒱(𝑠) denotes the jafari transform of the function 𝑣(𝑡).  
From the properties of the Jafari transform [13], we have 

 

𝕁[𝑣(𝑡)]  = 𝕁[𝜓(𝑛)(𝑡)], (2.9) 

and 

𝒱(𝑠) = 𝑞𝑛(𝑠) 𝒥(𝑠) − 𝑝(𝑠) ∑𝑞𝑛−1−𝑘(𝑠)

𝑛−1

𝑘=0

𝜓(𝑘)(0). (2.10) 
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Therefore, the equation (2.8) becomes 

 

𝕁[𝐷𝛼𝜓(𝑡)]  =
1

𝑞𝑛−𝛼(𝑠)
 (𝑞𝑛(𝑠) 𝒥(𝑠) − 𝑝(𝑠) ∑𝑞𝑛−1−𝑘(𝑠)

𝑛−1

𝑘=0

𝜓(𝑘)(0)) 

= 𝑞𝛼(𝑠) 𝒥(𝑠) − 𝑝(𝑠) ∑𝑞𝛼−1−𝑘(𝑠)

𝑛−1

𝑘=0

𝜓(𝑘)(0) 

(2.11) 

                         

The proof is complete.  

 

Corollary 2.1.  

 

∎ If  𝑝(𝑠) = 1 and 𝑞(𝑠) = 𝑠, we get the Laplace transform of the Caputo fractional derivative 

as follows [15] 

𝕃[𝐷𝛼𝜓(𝑡)] = 𝑠𝛼 ℒ(𝑠) − ∑ 𝑠𝛼−1−𝑘
𝑛−1

𝑘=0

𝜓(𝑘)(0), (2.12) 

 

where ℒ(𝑠) denotes the Laplace transform of the function 𝜓(𝑡).  
 

∎ If  𝑝(𝑠) = 𝑠 and 𝑞(𝑠) =
1

𝑠
, we get the Elzaki transform of the Caputo fractional derivative 

as follows [16] 

𝔼[𝐷𝛼𝜓(𝑡)] =
1

𝑠𝛼
 ℰ(𝑠) − s ∑

1

𝑠𝛼−1−𝑘

𝑛−1

𝑘=0

𝜓(𝑘)(0) 

 

=
1

𝑠𝛼
 ℰ(𝑠) − ∑ 𝑠2−𝛼+𝑘

𝑛−1

𝑘=0

𝜓(𝑘)(0), 

(2.13) 

 

where ℰ(𝑠) denotes the Elzaki transform of the function 𝜓(𝑡). 
 

∎ If  𝑝(𝑠) =
1

𝑠
 and 𝑞(𝑠) =

1

𝑠
, we get the Aboodh transform of the Caputo fractional derivative 

as follows [17] 

𝔸[𝐷𝛼𝜓(𝑡)] = 𝑠𝛼  𝒜(𝑠) −
1

𝑠
 ∑ 𝑠𝛼−1−𝑘
𝑛−1

𝑘=0

𝜓(𝑘)(0) 

 

= 𝑠𝛼  𝒜(𝑠) − ∑ 𝑠𝛼−2−𝑘
𝑛−1

𝑘=0

𝜓(𝑘)(0), 

(2.14) 

 

where 𝒜(𝑠) denotes the Aboodh transform of the function 𝜓(𝑡). 
 

∎ If 𝑝(𝑠) = 𝑞(𝑠) =
1

𝑠
, we get the Sumudu transform of the Caputo fractional derivative as 

follows [18]  
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𝕊[𝐷𝛼𝜓(𝑡)] =
1

𝑠𝛼
 𝒮(𝑠) − 

1

𝑠
 ∑

1

𝑠𝛼−1−𝑘

𝑛−1

𝑘=0

𝜓(𝑘)(0) 

 

= 𝑠−𝛼 [ 𝒮(𝑠) − ∑ 𝑠𝑘
𝑛−1

𝑘=0

𝜓(𝑘)(0)], 

(2.15) 

 

where 𝒮(𝑠) denotes the Sumudu transform of the function 𝜓(𝑡). 
                           

∎ If  𝑝(𝑠) =
1

𝑣
 and 𝑞(𝑠) =

𝑠

𝑣
, we get the natural transform of the Caputo fractional derivative 

as follows [19] 

ℕ+[𝐷𝛼𝜓(𝑡)] = (
𝑠

𝑣
)
𝛼

 𝒩(𝑠, 𝑣) − 
1

𝑣
 ∑ (

𝑠

𝑣
)
𝛼−1−𝑘

𝑛−1

𝑘=0

𝜓(𝑘)(0)  

 

= (
𝑠

𝑣
)
𝛼

 𝒩(𝑠, 𝑣) −  ∑
𝑠𝛼−(𝑘+1)

𝑣𝛼−𝑘

𝑛−1

𝑘=0

𝜓(𝑘)(0), 

(2.16) 

 

where 𝒩(𝑠, 𝑣) denotes the natural transform of the function ℒ(𝑠). 
 

∎ If  𝑝(𝑠) = 1 and 𝑞(𝑠) =
𝑠

𝑣
, we get the Shehu transform of the Caputo fractional derivative 

as follows [20] 

ℍ[𝐷𝛼𝜓(𝑡)] = (
𝑠

𝑣
)
𝛼

 ℋ(𝑠, 𝑣) − ∑ (
𝑠

𝑣
)
𝛼−1−𝑘

𝑛−1

𝑘=0

𝜓(𝑘)(0). (2.16) 

 

where ℋ(𝑠, 𝑣) denotes the Shehu transform of the function 𝜓(𝑡). 
 

                                

3.  METHODOLOGY OF THE ADTM 

 

This section gives the methodology of the ADTM 

 

Theorem 3.1. The fractional order Bratu-type differential equation (1.1) subject to the initial 

conditions (1.2) has the ADTM series solution in the form 

  

𝜓(𝑡) =  ∑𝜓𝑛(𝑡)

∞

𝑛=0

. (3.1) 

 

Proof: To prove this result, we consider the fractional order Bratu-type differential equation 

(1.1) subject to the initial conditions (1.2).  

For accelerating the convergence of ADTM, we replace the nonlinear term in equation 

(1.1) by their Taylor expansion. To this end, we can consider exp(𝜓(𝑡)) as 

 

exp(𝜓(𝑡)) = 1 +  𝜓(𝑡) +
𝜓2(𝑡)

2!
. (3.2) 
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Then, equation (1.1) can be written in the form 

 

𝐷𝛼𝜓(𝑡) + 𝜆 (1 +  𝜓(𝑡) +
𝜓2(𝑡)

2!
) = 0. (3.3) 

 

Taking the Jafari transform of both sides of equation (3.3), we get 

 

𝕁[𝐷𝛼𝜓(𝑡)] + 𝕁 [𝜆 (1 +  𝜓(𝑡) +
𝜓2(𝑡)

2!
)] = 0. (3.4) 

 

Using the Theorem 2.2, we have 

 

𝕁[𝜓(𝑡)] =
𝑝(𝑠)

𝑞(𝑠)
𝜓(0) +

𝑝(𝑠)

𝑞2(𝑠)
𝜓′(0) −

𝜆

𝑞𝛼(𝑠)
𝕁 [1 +  𝜓(𝑡) +

𝜓2(𝑡)

2!
]. (3.5) 

 

Applying the inverse Jafari transform both sides of equation (3.5), and using the initial 

conditions (1.2), we get 

 

𝜓(𝑡) = 𝐶0 + 𝐶1𝑡 − 𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [1 +  𝜓(𝑡) +

𝜓2(𝑡)

2!
]). (3.6) 

 

Now, assume the solution 𝜓(𝑡) in term of infinite series given by 

  

𝜓(𝑡) =  ∑𝜓𝑛(𝑡)

∞

𝑛=0

. (3.7) 

 

Also, the nonlinear term 𝜓2(𝑡)is decomposed in term of Adomian polynomials as 

  

𝜓2(𝑡) =  ∑𝐴𝑛(𝑡)

∞

𝑛=0

, (3.8) 

 

where 𝐴𝑛 is known as the Adomian polynomials [21] can be determined from the relation 

  

𝐴𝑛 = 
1

𝑛!

𝑑𝑛

𝑑𝜗𝑛
[(∑𝜗𝑖

∞

𝑖=0

𝜓𝑖)

2

]

𝜗=0

, 𝑛 = 0,1,2,…  (3.9) 

 

The first Adomian Polynomials are given by 

  

𝐴0 = 𝜓0
2, 

 

𝐴1 =  2𝜓0𝜓1, 
 

𝐴2 =  2𝜓0𝜓2 + 𝜓1
2, 

 

𝐴3 =  2𝜓0𝜓3 +  2𝜓1𝜓2. 

(3.10) 
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Substituting equations (3.7) and (3.8) into equation (3.6), we get 

 

∑𝜓𝑛(𝑡)

∞

𝑛=0

= 𝐶0 + 𝐶1𝑡 − 𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [1 +  𝜓(𝑡) +

1

2!
∑𝐴𝑛(𝑡)

∞

𝑛=0

]). (3.11) 

 

Comparing both sides of equation (3.11), we have the following recurrence relation 

 

 𝜓0(𝑡) = 𝐶0 + 𝐶1𝑡 − 𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[1]), 

 

𝜓1(𝑡) = −𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓0(𝑡) +

1

2!
𝐴0(𝑡)]), 

 

𝜓2(𝑡) = −𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓1(𝑡) +

1

2!
𝐴1(𝑡)]), 

 

𝜓3(𝑡) = −𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓2(𝑡) +

1

2!
𝐴2(𝑡)]),  

⋮ 

𝜓𝑛+1(𝑡) = −𝜆𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓𝑛(𝑡) +

1

2!
𝐴𝑛(𝑡)]). 

 

(3.12) 

 

 

Hence, the series solution of equations (1.1) and (1.2) is given by 

  

𝜓(𝑡) =  ∑𝜓𝑛(𝑡)

∞

𝑛=0

. (3.13) 

 

The proof is complete.  

 

Remark 3.1. The approximate solution of 𝑚 −order term for equations (1.1) and (1.2), is 

given by 

𝜓(𝑡) =  ∑ 𝜓𝑛(𝑡)

𝑚−1

𝑛=0

= 𝜓0(𝑡) + 𝜓1(𝑡) + 𝜓2(𝑡) + ⋯+ 𝜓𝑚−1(𝑡). (3.14) 

 

 

4.  CONVERGENCE AND ERROR ESTIMATION 

 

 

This section introduces the convergence and sufficient condition of the convergence 

for the ADTM when it is applied to solve the fractional order Bratu type differential equation. 

Based on the sufficient condition of the convergence, an estimation of the maximum absolute 

truncated error of the solution is also studied. 
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Theorem 4.1. Let 𝜓𝑛(𝑡) and 𝜓(𝑡) be defined in Banach space (𝐶[0,1], ‖. ‖), then the ADTM 

series ∑ 𝜓𝑛(𝑡)
∞
𝑛=0  converges to the solution 𝜓(𝑡) of equation (1.1) if there exists 𝜉, 0 < 𝜉 < 1 

such that ‖𝜓𝑛+1(𝑡)‖ ≤ 𝜉, ∀𝑛 ∈ ℕ.  
 

Proof: Let {𝑆𝑛(𝑡)}𝑛≥0 be a sequence of partial sums of the series (3.1), defined by 

 

𝑆𝑛(𝑡) = ∑𝜓𝑘(𝑡),

𝑛

𝑘=0

 (4.1) 

then 

 

‖𝑆𝑛+1(𝑡) − 𝑆𝑛(𝑡)‖ = ‖𝜓𝑛+1(𝑡)‖ ≤ 𝜉‖𝜓𝑛(𝑡)‖ ≤ 𝜉
2‖𝜓𝑛−1(𝑡)‖ ≤ ⋯ ≤ 𝜉

𝑛+1‖𝜓0(𝑡)‖. (4.2) 

 

 

          For any 𝑝, 𝑞 ∈ ℕ, 𝑝 > 𝑞, by using (4.2) and triangle inequality successively, we have 

 

‖𝑆𝑝(𝑡) − 𝑆𝑞(𝑡)‖ = ‖𝑆𝑝(𝑡) − 𝑆𝑝−1(𝑡) + 𝑆𝑝−1(𝑡) − 𝑆𝑝−2(𝑡) + ⋯+ 𝑆𝑞+1(𝑡) − 𝑆𝑞(𝑡)‖ 

 

≤ ‖𝑆𝑝(𝑡) − 𝑆𝑝−1(𝑡)‖ + ‖𝑆𝑝−1(𝑡) − 𝑆𝑝−2(𝑡)‖ + ⋯+ ‖𝑆𝑞+1(𝑡) − 𝑆𝑞(𝑡)‖ 

 

≤ 𝜉𝑝‖𝜓0(𝑡)‖ + 𝜉
𝑝−1‖𝜓0(𝑡)‖ +⋯+ 𝜉

𝑞+1‖𝜓0(𝑡)‖ 

 

= 𝜉𝑞+1(1 + 𝜉 + 𝜉2 +⋯+ 𝜉𝑝 +⋯)‖𝜓0(𝑡)‖ 

 

≤ 𝜉𝑞+1 (
1 − 𝜉𝑝−𝑞

1 − 𝜉
) ‖𝜓0(𝑡)‖ . 

(4.3) 

 

Since 0 < 𝜉 < 1  we have 1 − 𝜉𝑝−𝑞 < 1, then 

 

‖𝑆𝑝(𝑡) − 𝑆𝑞(𝑡)‖ ≤
𝜉𝑞+1

1 − 𝜉
‖𝜓0(𝑡)‖. (4.4) 

 

So ‖𝑆𝑝(𝑡) − 𝑆𝑞(𝑡)‖
𝑝,𝑞⟶∞
→    0 as 𝜓0 is bounded. Thus {𝑆𝑛(𝑡)}  is a Cauchy sequence in 

Banach space and hence convergent. Therefore, there exists 𝜓 ∈ 𝐵 such that 

  

 ∑𝜓𝑛(𝑡) =   𝜓(𝑡)

∞

𝑛=0

. (4.5) 

 

          The proof is complete.  

 

Theorem 4.2. If there exists 0 < 𝜉 < 1 such a way ‖𝜓𝑛+1(𝑡)‖ ≤ 𝜉‖𝜓𝑛(𝑡)‖, ∀𝑛 ∈ ℕ, then the 

maximum absolute truncated error of the ADTM series solution (3.1) is estimated as 

  

‖   𝜓(𝑡) −∑𝜓𝑘(𝑡) 

𝑚

𝑘=0

‖ ≤
𝜉𝑚+1

1 − 𝜉
‖𝜓0(𝑡)‖. (4.6) 
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Proof: Since ∑ 𝜓𝑘(𝑡) 
𝑛
𝑘=0 is finite, this implies that ∑ 𝜓𝑘(𝑡) < ∞

𝑛
𝑘=0  

 

          Consider.  

 

‖ 𝜓(𝑡) −∑𝜓𝑘(𝑡) 

𝑚

𝑘=0

‖ = ‖ ∑ 𝜓𝑛(𝑡) 

∞

𝑘=𝑛+1

‖ 

 

= ∑ ‖𝜓𝑛(𝑡)‖

∞

𝑘=𝑚+1

 

≤ ∑ 𝜉𝑚
∞

𝑘=𝑚+1

‖𝜓0(𝑡)‖ 

 

≤ 𝜉𝑚+1(1 + 𝜉 + 𝜉2 +⋯)‖𝜓0(𝑡)‖ 

  

≤
𝜉𝑚+1

1 − 𝜉
‖𝜓0(𝑡)‖. 

(4.7) 

 

The proof is complete.  

 

                                

5.  NUMERICAL EXAMPLES 

 

 

In this section, four numerical examples are studied to demonstrate the performance 

and efficiency of the ADTM. The results obtained by the proposed method are compared with 

the analytical solution and are found to be in good agreement with each other. 

 

Example 5.1. Consider the following fractional order Bratu-type differential equation  

 

                                              𝐷𝛼𝜓(𝑡) − 2 exp(𝜓(𝑡)) = 0,                                                (5.1) 

subject to the initial conditions 

 

                                                        𝜓(0) =,𝜓′(𝑡) = 0,                                                         (5.2) 

where 0 < 𝑡 < 1 and 𝐷𝛼 is the Caputo fractional derivative operator of order 1 < 𝛼 ≤ 2. 

 

          The exact solution of equations (5.1) and (5.2) for 𝛼 = 2 is given by [5] 

 

                                                                   𝜓(𝑡) = − ln(cos 𝑡).                                                        (5.3) 

 

         Using the mentioned method in Section 3, we can generate the following recurrence 

relation as 

 𝜓0(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[1]),                

 

                  𝜓1(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓0(𝑡) +

1

2!
𝐴0(𝑡)]),  
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                                                     𝜓2(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓1(𝑡) +

1

2!
𝐴1(𝑡)]),                                     

 

                   𝜓3(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓2(𝑡) +

1

2!
𝐴2(𝑡)]),  

 

⋮ 
 

                                         𝜓𝑛+1(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓𝑛(𝑡) +

1

2!
𝐴𝑛(𝑡)]).                         (5.4) 

 

              Now, from the recurrence relation (5.4) and the Adomian polynomials (3.9), we 

obtain the first few components of the solution for equations (5.1) and (5.2) as follows 

  

                       𝜓0(𝑡) =
2

Γ(𝛼 + 1)
𝑡𝛼 ,             

 

                       𝜓1(𝑡) =
4

Γ(2𝛼 + 1)
𝑡2𝛼 +

4Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(3𝛼 + 1)
𝑡3𝛼 ,  

 

                       𝜓2(𝑡) =
8

Γ(3𝛼 + 1)
𝑡3𝛼 +

8[2Γ(𝛼 + 1)Γ(3𝛼 + 1) + Γ2(2𝛼 + 1)]

Γ2(𝛼 + 1)Γ(2𝛼 + 1)Γ(4𝛼 + 1)
𝑡4𝛼       

 

                                   +
16Γ(2𝛼 + 1)Γ(4𝛼 + 1)

Γ3(𝛼 + 1)Γ(3𝛼 + 1)Γ(5𝛼 + 1)
𝑡5𝛼 .                       

(5.5) 

 

Therefore, the approximate solution of the 3 −order term for equation (5.1) and (5.2) 

is given by 
 

𝜓(𝑡) =
2

Γ(𝛼 + 1)
𝑡𝛼 +

4

Γ(2𝛼 + 1)
𝑡2𝛼 + 4(

2Γ2(𝛼 + 1) + Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(3𝛼 + 1)
) 𝑡3𝛼

+ 8(
2Γ(𝛼 + 1)Γ(3𝛼 + 1) + Γ2(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(2𝛼 + 1)Γ(4𝛼 + 1)
) 𝑡4𝛼  

+
16Γ(2𝛼 + 1)Γ(4𝛼 + 1)

Γ3(𝛼 + 1)Γ(3𝛼 + 1)Γ(5𝛼 + 1)
𝑡5𝛼 .   

  

(5.6) 

 

The behavior of the 

exact solution and approximate 

solutions of the 3 −order term 

for different values of 𝛼 for 

equations (5.1) and (5.2) are 

represented graphically in Fig. 

1.  

 

 

 
Figure 1. The graphs of the exact solution and approximate 

solutions using the ADTM for Example 5.1 
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Example 5.2. Consider the following fractional order Bratu-type differential equation  

 

                                                 𝐷𝛼𝜓(𝑡) − exp(2𝜓(𝑡)) = 0,                                                (5.7) 

subject to the initial conditions 

 

                                                        𝜓(0) =,𝜓′(𝑡) = 0,                                                          (5.8) 

 

where 0 < 𝑡 < 1 and 𝐷𝛼 is the Caputo fractional derivative operator of order 1 < 𝛼 ≤ 2. 

          The exact solution of equations (5.7) and (5.8) for 𝛼 = 2 is given by [22] 

 

                                                                    𝜓(𝑡) =  ln(sec 𝑡).                                                            (5.9) 

 

          Using the mentioned method in Section 3, we can generate the following recurrence 

relation as 

   𝜓0(𝑡) = 𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[1]),                

 

                  𝜓1(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[ 𝜓0(𝑡) + 𝐴0(𝑡)]),  

 

                                                     𝜓2(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[ 𝜓1(𝑡) + 𝐴1(𝑡)]),                                     

 

                   𝜓3(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[ 𝜓2(𝑡) + 𝐴2(𝑡)]),  

 

⋮ 
 

                                        𝜓𝑛+1(𝑡) = 2𝕁
−1 (

1

𝑞𝛼(𝑠)
𝕁[ 𝜓𝑛(𝑡) + 𝐴𝑛(𝑡)]).                            (5.10) 

 

              Now, from the recurrence relation (5.10) and the Adomian polynomials (3.9), we 

obtain the first few components of the solution for equations (5.7) and (5.8) as follows 

  

                       𝜓0(𝑡) =
1

Γ(𝛼 + 1)
𝑡𝛼 ,             

 

                       𝜓1(𝑡) =
2

Γ(2𝛼 + 1)
𝑡2𝛼 +

2Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(3𝛼 + 1)
𝑡3𝛼 ,  

 

                       𝜓2(𝑡) =
4

Γ(3𝛼 + 1)
𝑡3𝛼 +

4[2Γ(𝛼 + 1)Γ(3𝛼 + 1) + Γ2(2𝛼 + 1)]

Γ2(𝛼 + 1)Γ(2𝛼 + 1)Γ(4𝛼 + 1)
𝑡4𝛼       

 

               +
8Γ(2𝛼 + 1)Γ(4𝛼 + 1)

Γ3(𝛼 + 1)Γ(3𝛼 + 1)Γ(5𝛼 + 1)
𝑡5𝛼 .                        

             (5.11) 

 

Therefore, the approximate solution of the 3 −order term for equation (5.7) and (5.8) 

is given by 
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 𝜓(𝑡) =
1

Γ(𝛼 + 1)
𝑡𝛼 +

2

Γ(2𝛼 + 1)
𝑡2𝛼 + 2(

2Γ2(𝛼 + 1) + Γ(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(3𝛼 + 1)
) 𝑡3𝛼             

,  

+4(
2Γ(𝛼 + 1)Γ(3𝛼 + 1) + Γ2(2𝛼 + 1)

Γ2(𝛼 + 1)Γ(2𝛼 + 1)Γ(4𝛼 + 1)
) 𝑡4𝛼  +

8Γ(2𝛼 + 1)Γ(4𝛼 + 1)

Γ3(𝛼 + 1)Γ(3𝛼 + 1)Γ(5𝛼 + 1)
𝑡5𝛼 .         

(5.12) 

 

The behavior of the exact solution and approximate solutions of the 3 −order term for 

different values of 𝛼 for equations (5.7) and (5.8) are represented graphically in Fig. 2. 

 
Figure 2. The graphs of the exact solution and approximate solutions using the ADTM for Example 5.2 

 

Example 5.3. Consider the following fractional order Bratu-type differential equation  

 

                                                𝐷𝛼𝜓(𝑡) − 𝜋2 exp(𝜓(𝑡)) = 0,                                           (5.13) 

 

subject to the initial conditions 

 

                                    𝜓(0) =,𝜓′(𝑡) = 𝜋,                                                      (5.14) 

 

where 0 < 𝑡 < 1 and 𝐷𝛼 is the Caputo fractional derivative operator of order 1 < 𝛼 ≤ 2. 

          The exact solution of equations (5.13) and (5.14) for 𝛼 = 2 is given by [22] 

 

                                                              𝜓(𝑡) =  − ln(1 − sin 𝜋𝑡).                                                 (5.15) 

 

          Using the mentioned method in Section 3, we can generate the following recurrence 

relation as 

 𝜓0(𝑡) = 𝜋𝑡 + 𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁[1]),                

 

      𝜓1(𝑡) = 𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓0(𝑡) +

1

2!
𝐴0(𝑡)]),  
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                                        𝜓2(𝑡) = 𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓1(𝑡) +

1

2!
𝐴1(𝑡)]),                                     

 

     𝜓3(𝑡) = 𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓2(𝑡) +

1

2!
𝐴2(𝑡)]),  

 

⋮ 
 

                                        𝜓𝑛+1(𝑡) = 𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [ 𝜓𝑛(𝑡) +

1

2!
𝐴𝑛(𝑡)]),                             (5.16) 

 

          Now, from the recurrence relation (5.10) and the Adomian polynomials (3.9), we obtain 

the first few components of the solution for equations (5.13) and (5.14) as follows 
  

            𝜓0(𝑡) = 𝜋𝑡 +
𝜋2

Γ(𝛼 + 1)
𝑡𝛼 ,             

 

           𝜓1(𝑡) =
𝜋3

Γ(𝛼 + 2)
𝑡𝛼+1 +

𝜋4

Γ(2𝛼 + 1)
𝑡2𝛼 +

𝜋4

Γ(𝛼 + 1)
𝑡𝛼+2 +

𝜋5Γ(𝛼 + 2)

Γ(𝛼 + 1)Γ(2𝛼 + 2)
𝑡2𝛼+1 

 

               +
𝜋6Γ(2𝛼 + 1)

2Γ2(𝛼 + 1)Γ(3𝛼 + 1)
𝑡3𝛼 .                                                                                          

(5.17) 
 

Therefore, the approximate solution of the 2 −order term for equation (5.13) and 

(5.14) is given by 
 

                       𝜓1(𝑡)

= 𝜋𝑡 +
𝜋2

Γ(𝛼 + 1)
𝑡𝛼 +

𝜋3

Γ(𝛼 + 2)
𝑡𝛼+1 +

𝜋4

Γ(2𝛼 + 1)
𝑡2𝛼 +

𝜋4

Γ(𝛼 + 1)
𝑡𝛼+2

+
𝜋5Γ(𝛼 + 2)

Γ(𝛼 + 1)Γ(2𝛼 + 2)
𝑡2𝛼+1  +

𝜋6Γ(2𝛼 + 1)

2Γ2(𝛼 + 1)Γ(3𝛼 + 1)
𝑡3𝛼 .                            

(5.18) 
 

The behavior of the exact solution and approximate solutions of the 3 −order term for 

different values of 𝛼 for equations (5.13) and (5.14) are represented graphically in Fig. 3. 
 

 
Figure 3. The graphs of the exact solution and approximate solutions using the ADTM for Example 5.3 
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Example 5.4. Consider the following fractional order Bratu-type differential equation  

 

                                             𝐷𝛼𝜓(𝑡) + 𝜋2 exp(−𝜓(𝑡)) = 0,                                           (5.19) 

subject to the initial conditions 

 

                                                       𝜓(0) =,𝜓′(𝑡) = 𝜋,                                                        (5.20) 

 

where 0 < 𝑡 < 1 and 𝐷𝛼 is the Caputo fractional derivative operator of order 1 < 𝛼 ≤ 2. 

          The exact solution of equations (5.19) and (5.20) for 𝛼 = 2 is given by [22] 

 

                                                                𝜓(𝑡) =  ln(1 + sin 𝜋𝑡).                                                   (5.21) 

 

          Using the mentioned method in Section 3, we can generate the following recurrence 

relation as 

 𝜓0(𝑡) = 𝜋𝑡 − 𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁[1]),                          

 

      𝜓1(𝑡) = −𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [− 𝜓0(𝑡) +

1

2!
𝐴0(𝑡)]),  

 

                                        𝜓2(𝑡) = −𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [− 𝜓1(𝑡) +

1

2!
𝐴1(𝑡)]),                                     

 

     𝜓3(𝑡) = −𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [−𝜓2(𝑡) +

1

2!
𝐴2(𝑡)]),  

 

⋮ 
 

                                      𝜓𝑛+1(𝑡) = −𝜋
2𝕁−1 (

1

𝑞𝛼(𝑠)
𝕁 [−𝜓𝑛(𝑡) +

1

2!
𝐴𝑛(𝑡)]).                         (5.22) 

 

          Now, from the recurrence relation (5.22) and the Adomian polynomials (3.9), we obtain 

the first few components of the solution for equations (5.19) and (5.20) as follows 

  

            𝜓0(𝑡) = 𝜋𝑡 −
𝜋2

Γ(𝛼 + 1)
𝑡𝛼 ,             

 

           𝜓1(𝑡) =
𝜋3

Γ(𝛼 + 2)
𝑡𝛼+1 −

𝜋4

Γ(2𝛼 + 1)
𝑡2𝛼 −

𝜋4

Γ(𝛼 + 1)
𝑡𝛼+2 +

𝜋5Γ(𝛼 + 2)

Γ(𝛼 + 1)Γ(2𝛼 + 2)
𝑡2𝛼+1 

 

               +
𝜋6Γ(2𝛼+1)

2Γ2(𝛼+1)Γ(3𝛼+1)
𝑡3𝛼 .                                                                                             (5.23) 

 

Therefore, the approximate solution of the 2 −order term for equation (5.19) and 

(5.20) is given by 

 

                      𝜓1(𝑡) = 𝜋𝑡 −
𝜋2

Γ(𝛼 + 1)
𝑡𝛼 +

𝜋3

Γ(𝛼 + 2)
𝑡𝛼+1 −

𝜋4

Γ(2𝛼 + 1)
𝑡2𝛼 −

𝜋4

Γ(𝛼 + 1)
𝑡𝛼+2      
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              +
𝜋5Γ(𝛼 + 2)

Γ(𝛼 + 1)Γ(2𝛼 + 2)
𝑡2𝛼+1  +

𝜋6Γ(2𝛼 + 1)

2Γ2(𝛼 + 1)Γ(3𝛼 + 1)
𝑡3𝛼 .                                    (5.24)  

 

The behavior of the exact solution and approximate solutions of the 3 −order term for 

different values of 𝛼 for equations (5.19) and (5.20) are represented graphically in Fig. 4. 

 
Figure 4. The graphs of the exact solution and approximate solutions using the ADTM for Example 5.4 

 

Remark 5.1. In this work, only 3 −order term ADTM-approximate solution is used to 

calculate the numerical solution and ADTM can provide a more precise solution with less 

absolute error by calculating a higher order approximation. 

 

 

4. CONCLUSION 
 

 

In this work, the combination of the Adomian decomposition method and the Jafari 

transform in the sense of Caputo fractional derivative, proved very effective to solve 

fractional order Bratu-type differential equations. The proposed technique provides the 

solution in a series form that converges rapidly to the exact solution if it exists. We have 

applied the technique to different examples. From the obtained results, it is clear that the 

ADTM yields very accurate solutions using only a few iterates. Due to the efficiency and 

flexibility in the application as we have seen in the proposed examples, the conclusion that 

comes through this work is that ADTM can be applied to other fractional differential 

equations arising in science and engineering. 
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