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Abstract. We propose an effective general approach for accurately calculating the 

electron-electron, nuclear-electron and nuclear-nuclear Coulomb electrostatic interaction 

energies. Since these interaction energies are fundamental terms in the ab initio, density 

function and semi-empirical theories, their general examination will make an important 

contribution to the accurate calculation of the physical and chemical properties of atoms and 

molecules. It is well known that electron-electron, nuclear-electron and nuclear-nuclear 

Coulomb electrostatic interaction energies can be reduced to basic two-center Coulomb 

integrals. The analytical calculation of electrostatic interaction energies with respect to basic 

two-center Coulomb integrals over Slater type orbitals (STOs) in molecular coordinate 

systems allows for the routine evaluation of molecular structures and their related properties. 

In this study, we introduce a new full analytical algorithm for calculating the basic two-center 

Coulomb integrals over STOs using Guseinov’s auxiliary functions, especially the 

interactions between electrons. The auxiliary functions are calculated by using the exact 

recurrence relations developed by Guseinov. Our new approach is successfully tested on data 

from previously published studies, and can be recommended for the evaluation of related 

problems in atomic and molecular physics. 

Keywords: basic two-center Coulomb integrals; electrostatic interaction energies; 

charge density; auxiliary functions. 

 

 

1. INTRODUCTION  

 

 

There are many fields and applications in which electrostatic interactions are used; the 

most important of these are problems in molecular dynamics simulations of polar fluids, 

protein structure calculations, the modeling of macromolecules, and atomic and molecular 

structure calculations. For example, molecular recognition and chemical and biological 

activity are known to related to electrostatic interactions, and may be critical to achieving a 

physical model of solvation effects such as solvation energies and molecular properties [1-5]. 

In view of this, the accurate modeling and determination of solvation methods for the 

interactions between molecules are of prime importance.  

It is well known that electrons are very light particles and that their behaviors within 

atomic and molecular systems must be described from the perspective of quantum mechanical 

computational methods. The large difference in mass between the electrons and the nucleus 

offers scientists computational opportunities to solve for the terms of the Hamilton operator in 

the Schrödinger equation [6-8]. When solving problems involving differential equations, the 
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separation of variables method has been used to produce less complicated equations; however, 

for many particle systems, separation is not possible and a many-body problem can be 

transformed into a pseudo one-particle system by taking into account the average interaction. 

If we are interested in exact analytical definitions of electron distributions in detail, without 

reference to experimental data, we need to take into account all of the dynamics of a many-

electron system [6-11].  

Separating the nuclear and electronic variables occurring in the Hamilton operator is a 

useful approximation for avoiding this difficulty. Due to the difference in mass between the 

nucleus and an electron, the electronic wave function depends only the position of the nucleus 

rather than its velocity. Based on this, the Born-Oppenheimer method was introduced, which 

deals with a potential energy surface where electrons move within its field [12, 13]. By 

neglecting some interactions, the Schrödinger equation can be exactly solved for hydrogen-

like atoms. In addition, molecular orbital theory is a well-known approximation method that 

can be used to calculate the electronic structures of multi-electron atoms and molecules. Many 

theoretical approximate methods have been developed in molecular orbital theory [14]. One 

of the most commonly used of these methods is the Hartree-Fock-Roothaan (HFR) method, 

which is based on the linear combination of atomic orbitals (LCAO) approach [15-19]. The 

HFR method uses the self-consistent field (SCF) theory, which is based on independent 

particle models. We note that for any state of a single configuration which has any symmetry 

in the open shells, the open shell HFR theory [20-27] is not general. To eliminate these 

drawbacks of the HFR theory, a combined open shell Hartree-Fock-Roothaan (CHFR) theory 

of atomic-molecular and nuclear systems has been suggested [28, 29]. 

Scientists have previously attempted to solve the Schrödinger equation for many-body 

systems for all atoms and molecules, and in each case have started with the problem of the 

main force holding the nucleus and electron together, which is the Coulomb interaction. The 

Coulomb electron-electron, nuclear-electron and nuclear-nuclear interactions are all needed to 

calculate the electrostatic interaction energies. Notice that the electron-electron, nuclear-

electron and nuclear-nuclear interactions can generally be defined as basic two-center 

Coulomb integrals [30-38]. The main goal of this study is to calculate the basic two-center 

Coulomb integrals over STOs using auxiliary functions occurring in intermolecular 

electrostatic interaction energies. In addition, as can be seen from the studies of Guseinov [39-

46], the calculations of the multi-center molecular integrals occurring in the CHFR equations 

can be reduced to the basic two-center Coulomb integrals over STOs. Hence, fast and 

accurate analytical evaluations for basic two-center Coulomb integrals are very important in 

molecular structure calculations. In the literature, there are several calculation methods for 

basic two-center Coulomb integrals which have allowed other scientists to improve their 

studies in this field [31-49]. When all the developments and different approximations are 

considered, the evaluation of the Coulomb interactions becomes more straightforward. 

Analytical treatments of the intermolecular electrostatic interaction energies through the use 

of different algorithms have been important in terms of increasing the efficiency and 

accuracy. From previous studies, it can easily be seen that the evaluation of the electron-

electron term is the most difficult problem to solve analytically [36-38]. To overcome this 

difficulty, the basic two-center Coulomb integrals of the electron-electron interaction must be 

calculated accurately, using effective approaches.  

            In view of this, we propose an alternative analytical evaluation method for the basic 

two-center Coulomb integrals over STOs in a molecular coordinate system using auxiliary 

functions. Our test results show good agreement with the data in the literature. We believe 

that this study will be valuable for future work in this field. 
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2. MATERIALS AND METHODS 

 

 

           The two-center Coulomb integrals occurring in the HFR equations evaluated in this 

study are defined as follows [48]: 

 

         aa,bb

1 1 2 2 1 1 2 2

* *

, 1 1 2 2 1 1 1 1 2 2 2 2 1 2

21

1
, , , ; , , , ,abp p p p p a p a p b p bI R r r r r dv dv

r
              

     ,       (1) 

 

where 1 1 1 1
p n l m , 1 1 1 1p n l m    , 2 2 2 2p n l m , 2 2 2 2p n l m    , ab b aR R R   and the  

2 2 2,p br   

terms are the well-known STOs expressed as [49]: 

 

      
11

122, 2 2 ! ( , )
n n r

nlm lmr n r e S    
      .                                                                (2)   

 

Here, the complex and real spherical harmonics  lmS  are determined by  

 

( , ) (cos ) ( )lm ml m
S P     ,                                                                                                  (3) 

 

where  
l m

P  are the normalized associated Legendre functions [50, 51]. For complex spherical 

harmonics (SHs), 

 

1
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2

im

m e 


  ,                                                                                                                 (4) 

 

and for real spherical harmonics,  

 

0
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( )
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
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It should be noted that our definition of the phases for the complex spherical 

harmonics  *

lm l mY Y   differs from the Condon-Shortley phases [52] in terms of the sign. In 

order to evaluate the two-center Coulomb integrals, we use an expansion of the  one-center 

electron charge density [53]: 
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Here, 1 1
z     , 2 2z      and the  

1 1

*

1 1, ,p p pW z 
  terms are the charge density 

expansion coefficients, defined in general form as: 
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The generalized Gaunt coefficients  ,C lm l m
     and mmA

  in Eq. (7) are determined 

by the following relationships [54]: 
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1 2

, ,

,

1 1
(2 ) '

2 2

's

m m m m

mm mmM m m M m mM

mm

M m m

for real STO s
A

for complex STO

 
   



  

   






 

 



 .       (9) 

 

See Ref. [54] for exact definitions of the quantities 
m m

mm mmand  


  . 

In Eq. (6), the term  , ;pp abJ z z R
 is the basic two-center Coulomb integral in a 

molecular coordinate system, which can be defined in integral form as follows: 
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     .                                                         (10) 

 

Through the use of the Guseinov rotational function, the basic two-center Coulomb 

integral in a lined-up coordinate system can be written as follows: 
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Here,  , ,lm l mT      is the Guseinov rotational function (see Refs. [55-57] for an exact 

definition) and  , , ;nl n lJ R    
 is the lined-up basic two-center Coulomb integral which can 

be defined as [46]: 
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where  

abR R , 
1

2
p R , 
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In Eqs. (13) and (14), 0, 0ap p   and p pt p   . The indices n, s, and q are all 

nonnegative integers.  

It can be seen from Eq. (12) that giving reliable formulas for the auxiliary functions
q

nsQ , 
q

nsG  and qg  is very important for the accurate calculation of the basic two-center 

Coulomb integral. The auxiliary functions appearing in Eq. (12) are given by [45, 46]: 
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With the help of the auxiliary functions kA and kB , the expression for the
q

nsQ function 

can be defined as [45]: 
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For special cases, an alternative efficient formula for the 
q

nsQ function is given as [45]: 
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The ( , ')mF N N functions in Eqs. (18) and (19) are the generalized binomial 

coefficients defined by the following relations: 
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The recursive formulas for the 
q

nsG function can be expressed as follows [45]: 
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By applying partial integration with respect to  and , the recursive relations for 
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respectively, where 
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where C  is the Euler constant and  )( xEi   is an exponential integral determined by [51]:  
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The expressions for the functions  q

s

q

s

q

s EandLM 111 ,   can be easily obtained. For 

this purpose, we perform calculations analogous to those for the auxiliary functions q

sG 1 , 

which can be given as:       
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

 ,                                (32) 
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


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It is clear from Eq. (12) that the basic two-center Coulomb integral can be easily 

calculated using the auxiliary functions, which have no restrictions on their application.  
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3. RESULTS AND DISCUSSION 

 

 

            Since the electrostatic interactions are found to be a key factor in determining reliable 

structural information, the modeling of electrostatic interactions in different fields is very 

important. It is well known that the many-body theories of the electronic structure of atoms 

and molecules are very complex, and require additional computational approaches. One of the 

most widely used methods is HFR theory, which has been shown in the literature to give an 

acceptable accuracy. This theory depends on an independent particle model in which all 

interactions are taken into consideration in an average fashion. The literature contains various 

theoretical and semi-empirical methods which allow the HFR approximation to be used to 

solve many-body electronic structure problems. In this study, we have introduced a new 

calculation method for basic two-center Coulomb integrals using auxiliary functions, 

especially the interactions between electrons.  

It is clear from previous studies that the basic two-center Coulomb integrals are 

important for calculating the atomic and molecular properties [36-38]. In Ref. [37], Nguyen et 

al. proposed a precise calculation method using Löwdin  functions. Based on the accurate 

calculation of the basic two-center Coulomb integral over STOs, they calculated the 

electrostatic interaction energy between two continuous molecular charge distributions with 

high precision [38]. In a molecular coordinate system, the suggested approximations for 

accurate analytical calculations of basic two-center Coulomb integrals sustain its difficulties 

and deficiencies. Hence, deriving reliable methods for the evaluation of basic two-center 

Coulomb integrals is an important problem. In this study, we have suggested a full analytical 

algorithm for basic two-center Coulomb integrals using the Guseinov 
q

nsQ and 
q

nsG  auxiliary 

functions. It can be seen from Eq. (6) that the two-center Coulomb integrals can be expressed 

based on the basic two-center Coulomb integrals. Since there are no comparable solutions for 

the basic two-center Coulomb integrals in the literature, we have proved the accuracy of our 

method using two-center Coulomb integral solutions. The results of our calculations of the 

two-center Coulomb integrals arising in the LiH molecule in a molecular coordinate system, 

and a comparison with the results reported by Prof. I. Shavitt, are given in Table 1. 
 

Table 1. The comparative values of two-center Coulomb integrals aa,bbI in molecular coordinate system 

(in a.u.) 

1 1 1 1 1 1 2 2 2 2 2 2
( )( ) /( )( )n l m n l m n l m n l m      This study I.Shavitt’s Results 

(100)Li   (100)Li  / (100)H   (100)H   6.42923011411776 E-01 6.4292301 E-01 

(100)Li   (100)Li  / (211)H   (211)H   5.2875283894770   E-01 5.2875184  E-01 

(100)Li   (100)Li  / (211)H   (21–1)H   2.62916489254298 E-02 2.629165    E-02 

(100)Li   (100)Li  / (21–1)H   (21–1)H   5.68189312403252 E-01 5.6818931  E-01 

(211)Li   (211)Li  / (21–1)H   (21–1)H 4.75866356920393 E-01 4.7586636  E-01 

(211)Li   (211)Li  / (211)H   (211)H 4.79993860724975 E-01 4.7999386  E-01 

(210)Li   (210)Li  / (211)H   (211)H   4.61321486782034 E-01 4.6132149  E-01 

(210)Li   (210)Li  / (211)H   (210)H   3.22419243252908 E-03 3.22419      E-03 

(211)Li   (211)Li  / (311)H   (311)H   4.15340385129991 E-01 4.1534039  E-01 

(211)Li   (21–1)Li  / (311)H   (311)H   -1.71070506207756 E-03 -1.71070     E-03 

(211)Li   (21–1)Li  / (31–1)H   (31–1)H -4.65313979074467 E-04 -4.6531       E-04 

(322)Li   (322)Li  / (322)H   (322)H   3.72323271632354  E-01 3.7232327  E-01 

(322)Li   (322)Li  / (32–2)H   (32–2)H   3.71471468071404  E-01 3.7147147  E-01 

(322)Li   (322)Li  / (322)H   (32–1)H   -3.16264467119299 E-03 -3.16264     E-03 

(32–2)Li   (32–2)Li  / (32–1)H   (32–1)H   3.55486892754802 E-01 3.5548689  E-01 
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We note that since Prof. I.I. Guseinov was a Fulbright Scholar in 1985, he had the 

opportunity to work with Prof. I. Shavitt at Ohio State University, and shared a great deal of 

scientific information and data via private communications during this period. The calculation 

results given in Table 1 are based on these shared data. We remember Prof. I. Shavitt, one of 

the pioneers of quantum chemistry, with deep respect. In this paper, the atomic coordinates (x, 

y, z) and parameters (in a.u.) for the LiH molecule are assumed to be Li(0,0,0), H(0.5,1.0,0.7), 

ζLi = ζH = 1.5. It is clear from Table 1 that our results are in good agreement with the given 

data. Based on this, we can conclude that our calculation results for the basic two-center 

Coulomb integrals are also correct. We present calculation results for the basic two-center 

Coulomb integrals in Table 2 for arbitrary quantum sets and intermolecular distances. To the 

best of our knowledge, this study is the first to give calculation results for basic two-center 

Coulomb integrals in a molecular coordinate system.   
 

Table  2.  The values of basic two-center Coulomb integrals  ,
, ;

nlm n l m
J R   


 
in molecular coordinate 

system (in a.u.) 

n  l  m    n  l   m     R      Eq. (12) 

1 0 0 3 1 0 0 3 1.3 / 3  / 4  3.841558313832543  E-01 

2 1 1 3.8 2 0 0 4.6 0.6 2 / 3  3 / 4  6.83875826690048   E-02 

2 1 1 5.6 2 1 1 6.8 3.1 / 2    -1.9179687946892312E-03 

2 1 -1 8.7 2 1 -1 9.8 2.4   3 / 4  2.758897931991839  E-04 

3 2 -1 10.2 2 1 1 2.3 0.004 / 3  5 / 4  -7.491204672424577 E-10 

3 2 2 2.3 3 2 2 2.5 3.6 2 / 3  3 / 2  1.6336202976281054 E-02 

4 2 -1 10.6 4 2 -1 1.6 5.5 5 / 6  7 / 4  -2.654403921224302 E-04 

4 2 2 13.4 4 2 2 10.8 2.4   2  2.2218647776528384 E-05 

4 2 2 13.4 4 2 2 10.8 0.2   2  1.6080869906802815 E-02 

4 3 -3 9.6 4 3 -2 4.4 0.006 / 7  2 / 5  1.1060467631603868 E-05 

4 3 3 9.6 3 2 2 4.4 7.1 2 /7  3 / 5  7.722156806219806  E-07 

4 3 3 16.3 4 3 3 11.7 0.07 3 /7  4 / 5  6.478264999191043  E-03 

5 4 3 7.8 4 3 3 2.7 10.6 4 /7  6 / 5  -4.480882221214228 E-07 

5 4 4 17.8 5 4 4 15.9 15.8 5 / 7    6.256545092201997  E-05 

6 5 5 8.3 6 4 4 2.9 1.5 5 / 7    6.429862814343103  E-04 

7 5 5 13.1 6 4 4 13.6 2.1 6 /7  6 / 5  -1.1734523283710374 E-07 

8 4 3 9.6 7 4 4 9.6 6.2 6 / 7  6 / 5  3.744537010398973  E-06 

6 5 5 9.3 6 5 5 10.3 4.6 3 /4  7 / 5  -3.4434439500935504 E-07 

5 3 -3 15.2 5 3 3 19.6 0.4 7 / 8  8 / 5  1.7117759518718334  E-06 

 

To compute the basic two-center Coulomb integrals, the coefficients  mF n , 

( , ')mF N N , q

sn

q

sn

q

sn EandLM  , are repeatedly used. To reduce the time need to compute 

the multicenter matrix elements which appear in the CHFR equation and intermolecular 
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electrostatic interactions, we suggest a common storage method for these coefficients with the 

same selection rule. For quick calculations,  mF n , ( , ')mF N N , q

sn

q

sn

q

sn EandLM  ,  are 

stored in the memory of the computer. Based on the special relations given here, the positions 

of certain coefficients and quantities  mF n , ( , ')mF N N , q

sn

q

sn

q

sn EandLM  ,  are 

considered in order to put these coefficients and quantities into or to get them back from the 

computer memory. The analytical method suggested in this study for evaluating basic two-

center Coulomb integrals is valid for arbitrary quantum sets and intermolecular distances in a 

molecular coordinate system. The proposed method was implemented in the Turbo Pascal 7.0 

programming language and yielded high performance. 

 

 

4. CONCLUSION 

 

 

            In this study calculation method for the basic two-center Coulomb integral appearing 

in the intermolecular electrostatic interaction energy has been suggested in molecular 

coordinate system. The novelty of this study lies in the use of a full analytical calculation 

method in a molecular coordinate system with no restrictions on its use. We believe that this 

will benefit future studies of the electrostatic interaction energy. 
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