ORIGINAL PAPER

A NOTE ON RINGS

VOLETY V.S. RAMACHANDRAM¹

Manuscript received: 22.08.2011; Accepted paper: 30.08.2011

Published online: 01.09.2011

Abstract. In this paper we have mainly obtained some properties satisfied by the invertible and complement elements of a ring R with unity. We obtained that the complement of an idempotent element in a ring is idempotent. We obtained a necessary and sufficient condition for an element in a ring R to be invertible.

Keywords: Ring, Ring with unity, Boolean Ring, complement of an element, invertible element and idempotent element.

AMS subject classification: 13XX.

We start with the following Preliminaries:

Definition 1: A ring R is a Boolean ring if $a^2 = a \quad \forall a \in R$.

Definition 2: In a ring R with unity an element 'a' has complement [2] if there exist an element 'b' in R such that a + b = 1.

Definition 3: In a commutative ring R with unity an element 'a' is invertible [2] if there exist an element 'b' in R such that a, b = 1.

First we start with the following theorem.

Theorem 1: In a ring (R, +, .) with unity, $a \in R$ has complement if 'a' is invertible. *Proof*: Suppose $a \in R$ is invertible. There exists $b \in R$ such that a.b = b.a = 1 a + a.(b-1) = a + a.b - a.1 = a + 1 - a = 1, which proves the theorem.

Remark: The converse of the above theorem need not be true.

For example in the ring of integers (Z, +, .) every element has complement but some elements have no inverse.

Theorem 2: In a ring (R, +, .) with unity, the complement of an idempotent element in R is an idempotent element in R.

Proof: Let 'a' be an idempotent element in R and 'b' be its complement.

$$b.b = (1-a).(1-a) = 1-a-a+a.a = 1-a-a+a = 1-a = b$$

Theorem 3: In a Boolean ring [1] with unity, $a+b=1 \Rightarrow a.b=0$

Proof: Let R be a Boolean ring with unity.

$$a+b=1$$
 $\Rightarrow b=1-a$
 $\Rightarrow a.b = a.(1-a) \Rightarrow a.b = a-a.a \Rightarrow a.b = a-a \Rightarrow a.b = 0$

ISSN: 1844 – 9581 Mathematics Section

¹ B.V.C. College of Engineering, Rajahmundry. 533210, Andhra Pradesh, India. E-mail: wvsrch@yahoo.com.

280 A note on rings Volety Ramachandram

Theorem 4: In a commutative ring R with unity the following conditions are equivalent.

 $a \in R$ is invertible

The equations a.x = b and y.a = b have unique solution $\forall x, y, b \in R$

Proof: Suppose (1) hold.

There is an element $i \in R$ such that a.i = i.a = 1.

Consider the equation ax = b

$$\Rightarrow i.(ax) = i.b \Rightarrow (i.a).x = i.b \Rightarrow 1.x = i.b \Rightarrow x = i.b$$

Hence the equation a.x = b has a solution in the ring R.

If possible a.r = a.s for some r, s in R.

$$a.r = a.s \Rightarrow i.(a.r) = i.(a.s) \Rightarrow (i.a).r = (i.a).s \Rightarrow r = s$$

Suppose (2) hold.

The equation a.x = b has unique solution means there is a unique element say 'q' in R such that a .q = 1 so that 'q' is the inverse of 'a' in R.

Lemma 5: In a ring R with unity if 'a' and 'b' are invertible in R then $(a.b)^{-1} = b^{-1}.a^{-1}$ $Proof: a.b.(b^{-1}a^{-1}) = a.(bb^{-1}).a^{-1} = a.1.a^{-1} = a.a^{-1} = 1$.

Theorem 6: If R and R' are two rings with unity elements, f is a homomorphism from R to R' then the following are true:

'a' is idempotent in R then f(a) is idempotent in R'.

'a' is invertible in R then f(a) is invertible in R'.

'a' has complement in R then f(a) has complement in R'.

Proof: It is trivial.

Theorem 7: In a commutative ring R with unity the inverse of an idempotent element (if exists) is idempotent.

Proof: Let 'a' be an idempotent element in the ring R and 'b' be its inverse.

$$a.b = 1 \Rightarrow (a.b)^2 = 1 \Rightarrow a^2.b^2 = 1 \Rightarrow a.b^2 = 1 \Rightarrow b.a.b^2 = b \Rightarrow 1.b^2 = b \Rightarrow b^2 = b$$

Hence 'b' is idempotent in R.

REFERENCES

- [1] Herstein, I.N., *Topics in Algebra*, Wiley India (P) Ltd, 2nd Edition, 2006.
- [2] Srinivas, K.V.R., Ramachandram, V.V.S., *International Journal of Mathematics Research*, **3**(1), 53, 2011.
- [3] Ashraf, M., Quadri, M.A., Zelinsky, D., Amer. Math. Monthly, 95(4), 336, 1988.
- [4] Gupta, R.N., Math. Student, 39, 184, 1971.
- [5] Yuanchun, G., Acta Scientiarum Naturalium Universitatis Jilinensis, 3, 11, 1983.

www.josa.ro Mathematics Section