ORIGINAL PAPER

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL **EQUATION**

DOREL MIHET¹, CLAUDIA ZAHARIA¹

Manuscript received: 30.06.2012; Accepted paper: 15.08.2012;

Published online: 15.09.2012.

Abstract. We obtain a stability result for the Baker functional equation, in the setting of probabilistic quasi-metric spaces. As a particular case, we discuss the probabilistic stability of the Gamma functional equation.

Keywords: Hyers - Ulam stability, probabilistic quasi-metric space, probabilistic contraction.

2000 *Mathematics Subject Classification:* 54E70; 39B52; 47H10.

1. INTRODUCTION

By using a fixed point technique, J. A. Baker [1] established the following Ulam -Hyers stability result for the nonlinear functional equation

$$f(x) = \Phi(x, f(\eta(x))). \tag{1.1}$$

Theorem 1.1 ([1], **Theorem 2**) Suppose S is a nonempty set, (X,d) is a complete metric space, $\eta: S \to S$, $\Phi: S \times X \to X$, $\lambda \in [0,1)$, and

$$d(\Phi(u,x),\Phi(u,y)) \le \lambda d(x,y)$$
, for all $u \in S$, $x,y \in X$

Also, suppose that $f:S \rightarrow X$, $\delta > 0$, and

$$d(f(u),\Phi(u,f(\eta(u)))) \le \delta \text{ for all } u \in S.$$

Then there exists a unique mapping $g:S \rightarrow X$ such that

$$g(u) = \Phi(u, g(\eta(u))), \text{ for all } u \in S,$$

and

$$d(f(u),g(u)) \leq \frac{\delta}{1-\lambda}$$
, for all $u \in S$.

The aim of this paper is to obtain a similar result in the setting of probabilistic quasimetric spaces endowed with the łukasiewicz t-norm.

For the reader's convenience, we recall some useful terminology from the theory of

probabilistic metric spaces. For more details, see the books [2] and [3]. A triangular norm (or t-norm) is a binary operation $T:[0,1]\times[0,1]\to[0,1]$ which is commutative, associative, monotone in each variable and has 1 as the unit element.

Some basic examples are

ISSN: 1844 - 9581 Mathematics Section

¹ West University of Timisoara, Department of Mathematics, 300223 Timisoara, Romania. E-mail: mihet@math.uvt.ro; czaharia@math.uvt.ro.

$$T_L(a, b) = \max\{a+b-1, 0\}$$
 (the Lukasiewicz t-norm)
 $T_P(a, b) = a \cdot b$ (the product t-norm)

and

$$T_M(a,b) = \min\{a,b\}$$
 (the minimum t-norm).

We denote by Δ_+ the space of all functions $F:\mathbb{R}\to[0,1]$, such that F is left-continuous and non-decreasing on \mathbb{R} , F(0)=0, and $F(\infty)=1$, and let D_+ be the subspace of Δ_+ of functions F with $\lim_{t\to\infty}F(t)=1$.

Definition 1.1 A probabilistic quasi-metric space is a triple (X,P,T), where X is a nonempty set, T is a t-norm, and $P:X\times X\to D_+$ is a mapping satisfying

(i)
$$P_{xy} = P_{yx} = \varepsilon_0$$
 if and only if $x = y$;

(ii)
$$P_{xy}(t + s) \ge T(P_{xz}(t), Pzy(s)), x, y, z \in X, t, s > 0.$$

If P has the additional symmetry property $P_{xy} = P_{yx}$ for all $x, y \in X$, then (X, P, T) is called a Menger space.

If the mapping P in Definition? has values in Δ_+ instead of D_+ , then (X,P,T) is said to be a generalized probabilistic quasi-metric space.

The mapping $Q: X^2 \to D_+$ defined by $Q_{xy} = P_{yx}$ for all $x, y \in X$ is called the conjugate probabilistic quasi-metric of P.

Definition 1.2 Let (X,P,T) be a probabilistic quasi-metric space. A sequence $(x_n)_n$ in X is said to be:

- (i) right K-Cauchy (left K-Cauchy) if, for each $\varepsilon > 0$ and $\lambda \in (0,1)$, there exists $k \in \mathbb{N}$ so that, for all $m \ge n \ge k$, $P_{x_n,x_m}(\varepsilon) > 1 \lambda$ $(Q_{x_n,x_m}(\varepsilon) > 1 \lambda \text{ respectively})$;
- (ii) P-convergent (Q-convergent) to $x \in X$ if, for each $\varepsilon > 0$ and $\lambda \in (0,1)$, there exists $k \in \mathbb{N}$ so that $P_{xx_n} \left(\varepsilon > 1 \lambda \left(Q_{xx_n} \left(\varepsilon > 1 \lambda \right) \right) \right)$, for all $n \ge k$.

Definition 1.3 Let $A \in \{right\ K,\ left\ K\}$ and $B \in \{P,\ Q\}$. The space (X,P,T) is (A-B) complete if every A-Cauchy sequence is B convergent.

Definition 1.4 The probabilistic quasi-metric space (X,P,T) has the L-US (R-US) property if every P- (Q-) convergent sequence has a unique limit.

2. RESULTS

The proof of our main result is based on a fixed point theorem for $(\varepsilon - \lambda)$ -contractive mappings in probabilistic quasi-metric spaces (Lemma 2.1), which extends a result from [4]. Recall that an $(\varepsilon - \lambda)$ - contraction is a mapping f from a Menger space (X,F,T) to itself having the property that there exists $k \in (0,1)$ such that

www.josa.ro Mathematics Section

$$\forall \varepsilon > 0, \ \lambda \in (0,1): F_{xy}(\varepsilon) > 1 - \lambda \Rightarrow F_{f(x)f(y)}(k\varepsilon) > 1 - k\lambda$$
.

Note that every $(\varepsilon - \lambda)$ - contraction satisfies

$$F_{f(x)f(y)}(k\varepsilon) > F_{xy}(t), \forall x, y \in X,$$

that is, it is a Sehgal contraction on (X,F,T).

Lemma 1 Let (X, P, T_L) be a (right K-Q)-complete generalized probabilistic quasimetric space with the R-US property, and let $f: X \to X$ be a mapping for which there exists $k \in (0,1)$ such that, for all $\varepsilon > 0$ and $\lambda \in (0,1)$,

$$P_{xy}(\varepsilon) > 1 - \lambda \Rightarrow P_{f(x)f(y)}(k\varepsilon) > 1 - k\lambda$$
 (2.1)

Suppose there exist $\varepsilon > 0$, $\lambda \in (0,1)$ and $x \in X$ with $P_{xf(x)}(\varepsilon) > 1 - \lambda$. Then the mapping f has a fixed point x^* , and

$$P_{xx*}\left(\frac{\varepsilon}{1-k}+0\right) \ge \max\left\{1-\frac{\lambda}{1-k},0\right\} \tag{2.2}$$

Proof: Let $\varepsilon > 0$, $\lambda \in (0,1)$ and $x \in X$ be such that $P_{xf(x)}(\varepsilon) > 1 - \lambda$. Inductively, we obtain that $P_{f^n(x)f^{n+1}(x)}(k^n\varepsilon) > 1 - k^n\lambda$, for all $n \in \mathbb{N}$.

Let t > 0 and $\mu \in (0,1)$ be given. Since the series $\sum_{i=0}^{\infty} k^i$ is convergent, there exists

 $n_1 \in \mathbb{N}$ such that $\sum_{i=n_1}^{\infty} k^i \varepsilon < t$ and $\sum_{i=n_1}^{\infty} k^i \lambda < \mu$. Then, for all $n \ge n_1$ and $m \in \mathbb{N}^*$,

$$P_{f^{n}(x)f^{n+m}(x)}(t) \ge P_{f^{n}(x)f^{n+m}(x)}\left(\sum_{i=n}^{n+m-1} k^{i}\varepsilon\right)$$

$$\geq (T_L)_{i=n}^{n+m-1} \left(P_{f^i(x)f^{i+1}(x)} \left(k^i \varepsilon \right) \right)$$

$$\geq (T_L)_{i=n}^{n+m-1} \left(1 - k^i \lambda \right)$$

$$= \max \left\{ 1 - \sum_{i=n}^{n+m-1} k^i \lambda, 0 \right\} > 1 - \mu$$
(2.3) Error! Bookmark not

defined.

Consequently, $(f^n(x))_n$ is right K- Cauchy in X, thus it is Q-convergent to some $x^* \in X$, that is, $P_{f^n(x)x^*}(t) \to 1$ when $n \to \infty$, for all t > 0.

From hypothesis (2.1), we derive that f is a Sehgal contraction, with contraction constant k. Therefore

$$P_{f^{n+1}(x)f(x^*)}(kt) \ge P_{f^n(x)x^*}(t) \to 1, \ \forall t > 0,$$

ISSN: 1844 – 9581 Mathematics Section

meaning that $(f^n(x))_n$ is Q-convergent to $f(x^*)$. By the R-US property of the space X, we conclude that x^* is a fixed point of f.

Additionally, for all $n \ge 1$, relation (2.3.) implies

$$P_{x^{f^n}(x)}\left(\sum_{i=0}^{n-1} k^i \varepsilon\right) \ge \max\left\{1 - \sum_{i=0}^{n-1} k^i \lambda, 0\right\}$$

SO

$$P_{xf^{n}(x)}\left(\frac{\varepsilon}{1-k}\right) \ge P_{xf^{n}(x)}\left(\sum_{i=0}^{n-1} k^{i} \varepsilon\right) \ge \max\left\{1 - \frac{1-k^{n}}{1-k} \lambda, 0\right\}$$

$$\ge \max\left\{1 - \frac{\lambda}{1-k}, 0\right\}$$

For an arbitrary $\delta > 0$,

$$P_{xx^*}\left(\frac{\varepsilon}{1-k}+\delta\right) \geq T_L\left(P_{xf^n(x)}\left(\frac{\varepsilon}{1-k}\right),P_{f^n(x)x^*}\left(\delta\right)\right).$$

But $P_{f^n(x)x^*}(\delta) \to 1$ when $n \to \infty$. As a consequence,

$$P_{xx*}\left(\frac{\varepsilon}{1-k}+\delta\right) \ge T_L\left(\max\left\{1-\frac{\lambda}{1-k},0\right\},1\right) = \max\left\{1-\frac{\lambda}{1-k},0\right\}$$

By letting $\delta \to 0$, we obtain the estimation (2.2).

Theorem 2.2 Let S be a nonempty set, and (X, P, T_L) be a (right K-Q) - complete generalized probabilistic quasi-metric space with the R-US property. Suppose that $\Phi: S \times X \to X$ is a mapping for which there exists $k \in (0,1)$ so that, for all $\varepsilon > 0$ and $\lambda \in (0,1)$,

$$P_{xy}(\varepsilon) > 1 - \lambda \Rightarrow P\Phi(u, x)\Phi(u, y)(k\varepsilon) > 1 - k\lambda, \ \forall u \in S$$
 (2.4)

Then, for every $f: S \rightarrow X$ having the property that, for some $\varepsilon > 0$ and $\lambda \in (0,1)$,

$$P_{f(u)\Phi(u,f(\eta(u)))}(\varepsilon) > 1 - \lambda, \ \forall u \in S$$
 (2.5)

there exists a mapping a: $S \rightarrow X$ satisfying the equation (1.1), with

$$P_{f(u)a(u)}\left(\frac{\varepsilon}{1-k}+0\right) \ge \max\left\{1-\frac{\lambda}{1-k},0\right\}, \ \forall u \in S$$
 (2.6)

Proof: We consider the space $Y = \{g : S \to X\}$ and Baker's operator $J : Y \to Y$ given by $J(g)(u) = \Phi(u, g(\eta(u)))$, for all $g \in Y$ and all $u \in S$. We define the mapping $F : Y \times Y \to D$, by

$$F_{gh}(t) = \sup_{s < \varepsilon} \inf_{u \in S} P_{g(u)h(u)}(s),$$

for all $g, h \in Y$. From the hypotheses on (X, P, T_L) , we infer that (Y, F, T_L) is a (right K-Q) -complete generalized quasi-metric space with the R-US property.

www.josa.ro Mathematics Section

П

Next, we show that, if $g,h \in Y$, and $\varepsilon > 0$ and $\lambda \in (0,1)$ are such that $F_{gh}(\varepsilon) > 1 - \lambda$, then $F_{J(g)J(h)}(k\varepsilon) > 1 - k\lambda$. To this end, first note that, if $F_{gh}(\varepsilon) > 1 - \lambda$, there exists $\lambda' < \lambda$ in (0,1) for which $F_{gh}(\varepsilon) > 1 - \lambda' > 1 - \lambda$. This implies

$$\sup_{s<\varepsilon} \inf_{u\in S} P_{g(u)h(u)}(s_0) > 1 - \lambda'$$

whence there exists $s_0 < \varepsilon$ with the property

$$\inf_{u \in S} P_{g(u)h(u)}(s_0) > 1 - \lambda'.$$

It follows that

$$P_{g(u)h(u)}(s_0) > 1 - \lambda', \forall u \in S$$

So

$$P_{g(\eta(u))h(\eta(u))}(s_0) > 1 - \lambda', \forall u \in S$$

Then, via (2.4),

$$P_{J(g)(u)J(h)(u)}(ks_0) > 1 - k\lambda', \forall u \in S$$

Therefore

$$F_{J(g)J(h)}(k\varepsilon) = \sup_{ks < k\varepsilon} \inf_{u \in S} P_{J(g)(u)J(h)(u)}(ks) \ge 1 - k\lambda' > 1 - k\lambda$$

Now, let f be a mapping satisfying (2.5), for some given $\varepsilon > 0$ and $\lambda \in (0,1)$. We claim that $F_{g(f)}(\varepsilon) > 1 - \lambda$.

Indeed, from (2.5) it follows that there exists $\lambda' < \lambda$ with

$$P_{f(u)J(f)(u)}(\varepsilon) > 1 - \lambda' \tag{2.7}$$

for all $u \in S$. By the left continuity of P, there exists $s_0 < \varepsilon$ with $P_{f(u)J(f)(u)}(s_0) > 1 - \lambda'$, for all $u \in S$. We can deduce that $\inf_{u \in S} P_{f(u)J(f)(u)}(s_0) \ge 1 - \lambda'$, so

$$F_{g(f)}(\varepsilon) \ge 1 - \lambda' > 1 - \lambda$$

One can now apply Lemma 2.1 to obtain that the operator J has a fixed point a in Y, meaning that the mapping $a: S \to X$ is an exact solution of (1.1). Moreover,

$$F_{fa}\left(\frac{\varepsilon}{1-k}+0\right) \ge \max\left\{1-\frac{\lambda}{1-k},0\right\}$$
,

providing the estimation (2.6).

By setting $S = \mathbb{R}$, $X = \mathbb{R}$, $\Phi(u, x) = (u - 1)x$ and $\eta(u) = u - 1$ in the above theorem, we obtain the following probabilistic stability result for the Gamma functional equation:

Theorem 2.3 Let (R, P, T_L) be a (right K-Q) complete generalized probabilistic quasimetric space with the R-US property. If there exists $k \in (0,1)$ so that, for all $\varepsilon > 0$ and $\lambda \in (0,1)$,

$$P_{xy}\left(\varepsilon\right) > 1 - \lambda \Longrightarrow P_{(u-1)x,(u-1)y}\left(k\varepsilon\right) > 1 - k\lambda\;,\;\forall u \in \mathbb{R}\;,$$

and $f: \mathbb{R} \to \mathbb{R}$ is a mapping satisfying

$$P_{f(u),(u-1)f(u-1)}(\varepsilon) > 1 - \lambda, \ \forall u \in \mathbb{R}$$

ISSN: 1844 – 9581 Mathematics Section

for some $\varepsilon > 0$ and $\lambda \in (0,1)$, then there exists $a : \mathbb{R} \to \mathbb{R}$ with

$$a(u) = (u-1)a(u-1), \forall u \in \mathbb{R}$$

and

$$P_{f(u)a(u)}\left(\frac{\varepsilon}{1-k}+0\right) \ge \max\left\{1-\frac{\lambda}{1-k},0\right\}, \ \forall u \in \mathbb{R}.$$

Acknowledgements: The work of the first author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS- UEFISCDI, project number PN-II-ID-PCE-2011-3-0087. The work of the second author was supported by the strategic grant POSDRU/CPP107 /DMI1.5 /S /78421, Project ID 78421 (2010), co-financed by the European Social Fund - Investing in People, within the Sectoral Operational Programme Human Resources Development 2007 - 2013.

REFERENCES

- [1] Baker, J.A., *Proc. Amer. Math. Soc*, **112**, 729, 1991.
- [2] Cho, Y. J., Grabiec, M., Radu, V., *On Nonsymmetric Topological and Probabilistic Structures*, Nova Science Publishers, 2006.
- [3] Hadžić, O., Pap, E., Fixed point theory in probabilistic metric spaces, Kluwer Academic Publishers, 2001.
- [4] Mihet, D., Annals of the West University of Timisoara, Mathematics and Computer Science series, 37, 105, 1999.
- [5] Mihet, D., The Seminar of Probability Theory and Applications (STPA), 140, 2003.

www.josa.ro Mathematics Section