ORIGINAL PAPER

A CLASS OF FUNCTIONAL EQUATIONS FOR INVOLUTIVE AUTOMORPHISMS OF n – GROUPS

VASILE POP 1

Manuscript received: 25.06.2013; Accepted paper: 26.07.2013; Published online: 15.09.2013.

Abstract. In a n-group (G,[]) consider the following functional equations:

$$(E_n)$$
: $f([x_1,...,x_n,f(x_{n+1}),...,f(x_n)]) = [f(x_1),...,f(x_n),x_{n+1},...,x_n]$

 $(x_1,...,x_p,x_{p+1},...,x_n \in G,\ 1 \le p \le n-1)$. In the case of groups these equations were studied by I. Corovei and V. Pop [4]. We study this class of equations and characterize their solutions using involutive automorphisms of n-groups.

Keywords: functional equation, automorphisms, n-groups.

1. INTRODUCTION

On of the most efficient tool in the theory of n-groups is the reducing method, in order to use known results from group theory. By Hosszú theorem [3], we associate to a n-group a family of reduced groups, all of these giving by extension, the initial n-group.

In this paper we will use these methods and we reveal the necessary results and notions.

Let $(G,[\])$ be a *n*-group with the *n*-ary operation $[\]:G^n\to G$ and let us denote by \overline{e} the skew element of $e\in G$.

For every $e \in G$ we define the binary operation on G by

$$x \cdot y = [x, e_{n-3}, \overline{e}, y], \ x, y \in G.$$
 (2.1)

The pair (G,\cdot) is a group, which is called the reduced group in Hosszú sense, and we denote $(G,\cdot) = \text{Red}_{\alpha}(G,[\])$.

M. Hosszú [3] has proved that the function

$$\alpha_e: G \to G, \ \alpha_e(x) = [e, x, e, \overline{e}], \ x \in G,$$
 (2.2)

is an automorphism of (G, \cdot) , α^{n-1} is an inner automorphism

$$\alpha_e^{n-1}(x) = a \cdot x \cdot a^{-1}, \ x \in G, \text{ where } a = [e].$$
 (2.3)

ISSN: 1844 – 9581 Mathematics Section

¹ Technical University of Cluj-Napoca, Department of Mathematics, 400114 Cluj-Napoca, Romania. E-mail: vasile.pop@math.utcluj.ro.

Conversely: If (G,\cdot) is a group, for every pair (α,a) , where $a \in G$, α is an automorphism of (G,\cdot) , $\alpha^{n-1}(x) = a \cdot x \cdot a^{-1}$, $x \in G$, then the *n*-ary operation

$$[x_1, ..., x_n] = x_1 \cdot \alpha(x_2) \cdot ... \cdot \alpha^{n-1}(x_n) \cdot a$$
 (2.4)

determines on G a n-group structure that is called n-ary extension of (G,\cdot) in Hosszú sense and is denoted by

$$(G,[]) = \operatorname{Ext}_{\alpha,\alpha}(G,\cdot)..$$

M. Hosszú [3] show that

$$\operatorname{Ext}_{a,a}(\operatorname{Red}_{e}(G,[\])) = (G,[\]) \tag{2.5}$$

(every n-ary operation which determines a n-group is of the form (1.4)).

The relations between the morphisms of n-groups and its reduced group was established in [1, 2].

Theorem. [2] A map $f: G \to G$ is a morphism of n-group $(G, []) = \operatorname{Ext}_{\alpha, a}(G, \cdot)$ iff there exist a binary morphism of groups (G, \cdot) , $g: G \to G$ such that:

a)
$$f(x) = f(e) \cdot g(x), x \in G;$$

b) $g(\alpha(x)) = \alpha(f(e)) \cdot \alpha(g(x)) \cdot (\alpha(f(e)))^{-1};$
c) $f(a) = [f(e)].$ (2.6)

We recall that a function $f: G \to G$ is involutive if $f \circ f = 1_G$ or $f = f^{-1}$. (2.7)

2. THE FUNCTIONAL EQUATIONS $f: G \rightarrow G$

$$(E_p): f([x_1,...,x_p,f(x_{p+1}),...,f(x_n)]) = [f(x_1),...,f(x_p),x_{p+1},...,x_n]$$

ON A n**-GROUP** (G,[])

Let $(G,[\])$ be a n-group and $1 \le p \le n-1$. We consider the functional equation on G:

$$\begin{cases} f: G \to G \\ f([x_1, ..., x_p, f(x_{p+1}), ..., f(x_n)]) = [f(x_1), ..., f(x_p), x_{p+1}, ..., x_n] \\ x_1, ..., x_p, x_{p+1}, ..., x_n \in G. \end{cases}$$

For $e \in G$ we consider the Hosszú reduced group $(G, \cdot) = \text{Red}_e(G, [])$ using the same notation as (1.1), (1.2), (1.4).

www.josa.ro Mathematics Section

Theorem 2.1. If the function $f: G \to G$ verifies the equation (E_p) in the *n*-group (G,[]) then f verifies the equation (2.1) on the group (G,\cdot)

$$f(x \cdot b \cdot f(y)) = f(x) \cdot c \cdot y, \ x, y \in G$$
 (2.1)

where $b = \alpha^{p}(f(e)) \cdot \alpha^{p+1}(f(e)) \cdot ... \cdot \alpha^{n-2}(f(e)) \cdot a$, $c = \alpha(f(e)) \cdot \alpha^{2}(f(e)) \cdot ... \cdot \alpha^{p-1}(f(e)) \cdot a$.

Proof: Taking in (E_p) $x_1 = x$, $x_2 = ... = x_{n-1} = e$, $x_n = y$ and using $\alpha(e) = ... = \alpha^{n-1}(e) = e$, $\alpha(\overline{e}) = \overline{e}$, $\alpha^{n-1}(x) = a \cdot x \cdot a^{-1}$ we obtain the equation (2.1).

Theorem 2.2. If the function f verifies the equation (2.1) then f is a bijection and the function $g: G \to G$ defined by $f(x) = g(y_0^{-1} \cdot x)$, $x \in G$, satisfies the equation

$$g(u \cdot g(v)) = g(u) \cdot v, \ u, v \in G, \tag{2.2}$$

where $y_0 \in G$ satisfies $f(y_0) = e$.

Proof: Taking in (2.1) $a = b^{-1}$ it follows $f(f(y)) = f(b^{-1}) \cdot c \cdot y$, $y \in G$ and since the translation $h: G \to G$, $h(y) = f(b^{-1}) \cdot c \cdot y$, $y \in G$ is a bijection it follows that f is bijection too.

Let now $y = y_0$ in (1) where $f(y_0) = e$.

It follows $f(x \cdot b) = f(x) \cdot c \cdot y_0, x \in G$.

The equation (2.1) becomes $f(xbf(y)) = f(xb) \cdot y_0^{-1} \cdot y$, $x, y \in G$. By the transformation $f(x) = g(y_0^{-1} \cdot x)$, $x \in G$ we obtain: $g(y_0^{-1} \cdot xb \cdot g(y_0^{-1} \cdot y)) = g(y_0^{-1} \cdot xb) y_0^{-1} \cdot y$, $x, y \in G$. Denoting $u = y_0^{-1} \cdot x \cdot b$, $v = y_0^{-1} \cdot y$ it follows: $g(u \cdot g(v)) = g(u) \cdot v$, for every $u, v \in G$.

Theorem 2.3. The function $g: G \to G$ satisfies the equation (2.2) iff g is an involutive automorphism of the group (G, \cdot) .

Proof: Taking in (2.2) u = e it follows $g(g(v)) = g(e) \cdot v$, $v \in G$, so g is a morphism. For u = v = e it follows g(g(e)) = g(e), therefore g(e) = e and g(g(v)) = v, $v \in G$ (g is idempotent). The equation (2.2) becomes: $g(u \cdot g(v)) = g(u) \cdot g(g(v))$, $u, v \in G$ or $g(u \cdot t) = g(u) \cdot g(t)$, for all $u \in G$, $t = g(v) \in G$, so g is a morphism.

Remark. The solutions of the functional equation

$$g: \mathbf{R} \to \mathbf{R}$$
, $g(x+g(y)) = g(x) + y$, $x, y \in \mathbf{R}$

are the additive functions which on a Hamel basis H are defined as follows:

Let H be partitioned as $H = H_0 \cup H_1 \cup H_2$ and suppose that there exists a bijection $\varphi: H_1 \to H_2$.

We define $f(h_0) = h_0$, $h_0 \in H_1$, $f(h_1) = \varphi(h_1)$, $h_1 \in H_1$, $f(h_2) = \varphi^{-1}(h_2)$, $h_2 \in H_2$.

ISSN: 1844 – 9581 Mathematics Section

Theorem 2.4. The function f satisfies the equation (2.1) iff $f(x) = d \cdot g(x)$, $x \in G$, where $d \in G$, $g: G \to G$ is an involutive automorphism of (G, \cdot) and $g(b \cdot d) = c$, b, c are defined in Theorem 2.1.

Proof: From Theorem 2.2 and Theore, 2,3 we have

$$f(x) = g(y_0^{-1} \cdot x) = g(y_0^{-1}) \cdot g(x) = d \cdot g(x), \ x \in G,$$

where $d = g(y_0^{-1}) = f(e)$ and g is an idempotent automorphism. Taking account of (2.1) we obtain: dg(xbdg(y)) = dg(x)cy or dg(x)g(bd)g(g(y)) = dg(x)cy or g(bd) = c.

Theorem 2.5. If the function f satisfies the equation (E_p) on the n-group $(G,[\])$ then there exists an element $d \in G$, an automorphism g of bigroup $(G,\cdot) = \operatorname{Red}_e(G,[\])$ such that:

- a) $f(x) = d \cdot g(x), x \in G$;
- b) $g(g(x)) = x, x \in G;$
- c) f([e, d]) = [d, e].

Proof: Using Theorems 2.1, 2.2 and 2.3 it follows a) and b).

The relation c) is f([e, f(e)]) = [f(e), e] which is the same with $g(b \cdot d) = c$ from Theorem 2.4.

Remark. Taking in (E_n) $x_1 = e$, $x_2 = x$, $x_3 = ... = x_n = e$ we can prove the relation:

$$g(\alpha(x)) = \alpha(f(e)) \cdot \alpha(g(x)) \cdot (\alpha(f(e)))^{-1}, x \in G,$$

which is a necessary condition (Theorem 1.6), that f to be morphism of n-group $(G,[\])$, but it is not sufficiently (the relation c) of (1.6) is not verified). This is true if f(e) = e.

Theorem 2.6. If the function $f: G \to G$ has a fixed point, then the only solutions of equation (E_n) are the involutive automorphisms of n-group $(G,[\])$.

Proof: Choosing $e \in G$ a fixed point of f, from Theorem 2.5 we have d = e and f = g. From Remark and [5] it follows that f is an morphism of n-group (G, []).

Conversely, if f is an automorphism of n-group with the property f(f(x)) = x, $x \in G$, then f verifies the equation (E_n) .

REFERENCES

- [1] Corovei, I., Pop, Mathematica Cluj, 19, 15, 1990.
- [2] Corovei, I., Purdea, I., Mathematica Cluj, 25(48), 131, 1983.
- [3] Hosszu, M., Publ. Math. Debrecen, 10, 88, 1963.
- [4] Pop, V., Corovei, I., *Some conditional Cauchy functional equations*, Proc. of Conference on Algebra, Babeş-Bolyai Univ., Cluj-Napoca, **9**, 113, 1986.
- [5] Pop, V., *On the Cauchy functional equations on n-groups*, Proc. of Int. Workshop "Trend and Achievement in Information Technology", Technical Univ. Cluj-Napoca, U.T. Press, 92, 2002.

www.josa.ro Mathematics Section