ORIGINAL PAPER

ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES

DURSUN TASCI¹, ZISAN KUSAKSIZ TAS²

Manuscript received: 22.05.2019; Accepted paper: 26.08.2019; Published online: 30.09.2019.

Abstract. In this paper, we define the generaziled Lucas sequences and the Pell-Lucas sequences. Further we give Binet-like formulas, generating function, sums formulas and some important identities which involving the generalized Lucas and Pell-Lucas Numbers.

Keywords: Lucas numbers, Pell-Lucas Numbers, generalized Lucas Numbers and generalized Pell-Lucas Numbers.

1. INTRODUCTION

Fibonacci sequence, Lucas sequence, Pell sequence and Pell-Lucas sequence are most prominent examples of recursive sequences. These sequences arise naturally in many unexpected places and used in equally surprising places like computer algorithms [1-3], some areas of algebra [3, 4], graph theory [5, 6], quasi crystals [1, 7] and many areas of mathematics.

There are various types of generalization of these sequences. For example Tasci [8] defined the generalized order-k Lucas numbers, Er [9] defined the generalized order-k Fibonacci numbers, and Kilic [10] defined the generalized order-k Pell numbers.

The Fibonacci sequence $\{F_n\}_{n\geq 0}$ is defined by the recurrence relation,

$$F_{n+1} = F_n + F_{n-1} , n \ge 1$$
 (1.1)

with initial conditions $F_0 = 0$, $F_1 = 1$

Well known $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ are the roots of quadratic equation of the Fibonacci numbers.

The Lucas sequence $\{L_n\}_{n\geq 0}$ is defined by the recurrence relation,

$$L_{n+1} = L_n + L_{n-1} , n \ge 1$$
 (1.2)

with initial conditions $L_0 = 2$, $L_1 = 1$.

In [11], Melham gave Binet forms of Fibonacci and Lucas numbers defined as

$$F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $L_n = \alpha^n + \beta^n$,

where α and β are the roots of $x^2 - 2x - 1 = 0$.

The Pell sequence $\{P_n\}_{n\geq 0}$ is defined by

¹ Gazi University, Faculty of Science, Department of Mathematics, Ankara, Turkey. E-mail: dtasci@gazi.edu.tr.

² Gazi University, Enstitue of Science, Ankara, Turkey. E-mail: <u>zisan.k.tas@gmail.com</u>.

$$P_{n+1} = 2P_n + P_{n-1} , n \ge 1 (1.3)$$

with initial condition $P_0 = 0$, $P_1 = 1$.

We know that the roots of quadratic equation of Pell sequences are $\gamma = 1 + \sqrt{2}$ and $\theta = 1 - \sqrt{2}$.

Additionaly In [12], Horadam showed that some properties involving Pell numbers.

The Pell-Lucas sequence $\{Q_n\}_{n\geq 0}$ is defined by

$$Q_{n+1} = 2Q_n + Q_{n-1} , n \ge 1$$
 (1.4)

where $Q_0 = 2$, $Q_1 = 2$.

In [11], Melham gave Binet formulas for the Pell and Pell-Lucas numbers:

$$P_n = \frac{\gamma^n - \theta^n}{\gamma - \theta}$$
 and $Q_n = \gamma^n + \theta^n$

respectively.

Also, Modified Pell sequence $\{q_n\}_{n\geq 0}$ can be identified by the following recurrence relation

$$q_{n+1} = 2q_n + q_{n-1} , n \ge 1 (1.5)$$

where $q_0 = 1$, $q_1 = 1$

In [13, 14] Horadam the generalized Fibonacci sequence $\{U_n\}$ defined by with initial values $U_0=0$, $U_1=1$ and the recurrence relations

$$U_{n+1} = p \ U_n + q \ U_{n-1}$$
,

and the generalized Lucas sequence $\{V_n\}$ are defined by

$$V_{n+1} = pV_n + qV_{n-1}, n \ge 1$$

 $V_0 = 2$ and $V_1 = p$, where p and q are nonzero real numbers.

In this study, we define and study the generalized Pell and the generalized Pell-Lucas sequences. We give generating functions and Binet formulas for these sequences. Moreover, we obtain some important identities involving the generalized Pell and Pell-Lucas numbers.

2. THE GENERALIZED LUCAS NUMBERS

Firstly we give the definition of the generalized Lucas sequence.

Definition 2.1. The generalized Lucas sequence is defined by

$$D_{n+1}(a,b) = D_n(a,b) + D_{n-1}(a,b), \ n \ge 1$$
 (2.1)

with initial conditions $D_0(a,b) = a + b$, $D_1(a,b) = b$ where $D_n(a,b)$ is the n^{th} generalized Lucas numbers.

The first few terms of generalized Lucas numbers are

$$a + b$$
, b , $a + 2b$, $a + 3b$, $2a + 5b$, $3a + 8b$, $5a + 13b$

and so on. We remark that

If a = 1, b = 1, then we obtain Lucas numbers $D_n(1,1) = L_n$ and If a = -1, b = 1 we get Fibonacci numbers $D_n(-1,1) = F_n$.

Theorem 2.2. The Binet-like formula for the generalized Lucas sequence is

$$\mathbf{D}_{n}(a,b) = \left(\frac{b-\beta(a+b)}{\alpha-\beta}\right)\alpha^{n} + \left(\frac{\alpha(a+b)-b}{\alpha-\beta}\right)\beta^{n}$$
 (2.2)

where $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$ and α, b are real numbers.

Proof: From the theory of difference equations, we know the general term of the generalized Lucas numbers can be expressed in the following form

$$D_n(a,b) = c_1 \alpha^n + c_2 \beta^n$$

where c_1 and c_2 are the coefficients. Using the values n = 0, 1 we obtain the following the linear equation system:

$$D_0(a, b) = a + b = c_1 + c_2$$

$$D_1(a,b) = b = c_1\alpha + c_2\beta$$

The solution of this equation system is,

$$c_1 = \frac{b - \beta(a+b)}{\alpha - \beta}, c_2 = \frac{\alpha \cdot (a+b) - b}{\alpha - \beta}$$

Thus it is easily seen that the formula (2.2).

Theorem 2.3.The generating function of the generalized Lucas number is

$$\sum_{n=0}^{\infty} D_n(a,b) x^n = \frac{a+b-ax}{1-x-x^2}$$
 (2.3)

Proof: Let f(x) be the generating function of the generalized Lucas sequences. Then we can write

$$f(x) = \sum_{n=0}^{\infty} D_n(a,b)x^n = D_0(a,b) + D_1(a,b)x^1 + D_2(a,b)x^2 + \dots + D_n(a,b)x^n + \dots$$

On the other hand, since

$$xf(x) = \sum_{n=0}^{\infty} D_n(a,b)x^{n+1}$$

= $D_0(a,b)x^1 + D_1(a,b)x^2 + D_2(a,b)x^3 + \dots + D_{n-1}(a,b)x^n + \dots$

and

$$x^2 f(x) = \sum_{n=0}^{\infty} D_n(a,b) x^{n+2}$$

$$= D_0(a,b)x^2 + D_1(a,b)x^3 + D_2(a,b)x^4 + ... + D_{n-2}(a,b)x^n + ...$$

we write

$$(1 - x - x^2)f(x) = D_0(a, b) + [(D_1(a, b) - D_0(a, b))]x$$

Now using

$$D_0(a,b) = a + b$$
, $D_1(a,b) = b$ and $D_n(a,b) - D_{n-1}(a,b) - D_{n-2}(a,b) = 0$,

we obtain

$$f(x) = \frac{a+b-ax}{1-x-x^2}.$$

So the proof is complete.

Theorem 2.4. The sum of the first n generalized Lucas numbers is expressed as

$$\sum_{i=0}^{n} D_i(a,b) = D_{n+2}(a,b) - b \tag{2.4}$$

Proof: From the definition of the generalized Lucas sequences

$$D_{n+1}(a,b) = D_n(a,b) + D_{n-1}(a,b)$$

For the values of n ,we get the following equalities:

$$D_2(a,b) = D_1(a,b) + D_0(a,b)$$

$$D_3(a,b) = D_2(a,b) + D_1(a,b)$$

:

$$D_{n+2}(a,b) = D_{n+1}(a,b) + D_n(a,b)$$

If we now sum these equations term by term,

$$\sum_{i=2}^{n+2} D_i(a,b) = \sum_{i=1}^{n+1} D_i(a,b) + \sum_{i=0}^{n} D_i(a,b)$$

then using initial conditions $D_1(a, b) = b$, we obtain

$$\sum_{i=0}^{n} D_i(a,b) = D_{n+2}(a,b) - b.$$

Theorem 2.5 (Catalan Identity):

$$D_{n+r}(a,b)D_{n-r}(a,b) - D_n(a,b)^2 = 5c_1c_2(-1)^{n-r}F_r^2,$$
(2.5)

where, $n, r \in \mathbb{Z}^+$, n > r, F_r is the r - th Fibonacci number and

$$c_1 = \frac{b - \beta(a+b)}{\alpha - \beta}, \ c_2 = \frac{\alpha(a+b) - b}{\alpha - \beta}$$

Proof: Using the Binet- like formula for the generalized Lucas numbers formula and taking into account that $\alpha\beta = -1$ and $\alpha^r - \beta^r = \sqrt{5}F_r$ we write

$$\begin{split} D_{n+r}(a,b)D_{n-r}(a,b) - D_{n^2}(a,b) \\ &= (c_1\alpha^{n+r} + c_2\beta^{n+r})(c_1\alpha^{n-r} + c_2\beta^{n-r}) - (c_1\alpha^n + c_2\beta^n)^2 \\ &= c_1c_2\alpha^{n+r}\beta^{n-r} + c_1c_2\alpha^{n-r}\beta^{n+r} - 2c_1c_2(\alpha\beta)^n \\ &= c_1c_2(\alpha\beta)^n \left[\frac{\alpha^r}{\beta^r} + \frac{\beta^r}{\alpha^r} - 2 \right] \\ &= c_1c_2(\alpha\beta)^{n-r}(\alpha^r - \beta^r)^2 \\ &= 5c_1c_2(-1)^{n-r}F_r^2 \end{split}$$

So the theorem is proved.

Corollary 2.6 (Cassini's Identity)

$$D_{n+1}(a,b)D_{n-1}(a,b) - D_n(a,b)^2 = c_1c_25(-1)^{n-1}$$
(2.6)

Proof: Note that for r = 1, equality (2.3) gives Cassini's identity. Moreover we remark that $F_r = 1$.

Theorem 2.7 (d'Ocagne's Identity): If m > n, then

$$D_m(a,b)D_{n+1}(a,b) - D_n(a,b)D_{m+1}(a,b) = -5c_1c_2(-1)^{n+1}F_{m-n}$$
 (2.7)

where

$$c_1 = \frac{b - \beta(a+b)}{\alpha - \beta}$$
, $c_2 = \frac{\alpha \cdot (a+b) - b}{\alpha - \beta}$

Proof: Using Binet-like formula and $\alpha\beta = -1$

$$\begin{split} D_{m}(a,b)D_{n+1}(a,b) - D_{n}(a,b)D_{m+1}(a,b) \\ &= (c_{1}\alpha^{m} + c_{2}\beta^{m}) \ (c_{1}\alpha^{n+1} + c_{2}\beta^{n+1}) - (c_{1}\alpha^{n} + c_{2}\beta^{n})(c_{1}\alpha^{m+1} + c_{2}\beta^{m+1}) \\ &= c_{1}c_{2}\alpha^{m}\beta^{n+1} + c_{1}c_{2}\alpha^{n+1}\beta^{m} - c_{1}c_{2}\alpha^{n}\beta^{m+1} - c_{1}c_{2}\alpha^{m+1}\beta^{n} \\ &= c_{1}c_{2}\alpha^{n}\beta^{m}(\alpha - \beta) - c_{1}c_{2}\alpha^{m}\beta^{n}(\alpha - \beta) \\ &= 5c_{1}c_{2}(-1)^{n+1}F_{m-n} \end{split}$$

Theorem 2.8. For the integer $n \ge 1$

$$D_n(a,b) = aF_{n-1} + bF_{n+1} (2.8)$$

where F_n denotes n^{th} Fibonacci number.

Proof: (By induction on n) If n = 1 then the result is obvious. We assume that it is true for n i.e.,

$$D_n(a,b) = aF_{n-1} + bF_{n+1}$$

We'll denote that is true for n + 1

$$D_{n+1}(a,b) = aF_n + bF_{n+2}$$

By simple calculation using induction's hypothesis we write

$$D_{n+1}(a,b) = D_n(a,b) + D_{n-1}(a,b)$$

$$= aF_{n-1} + bF_{n+1} + aF_{n-2} + bF_n$$

$$= a(F_{n-1} + F_{n-2}) + b(F_n + F_{n+1})$$

$$= aF_n + bF_{n+2}$$

which ends the proof.

3. THE GENERALIZED PELL-LUCAS NUMBERS

Definition 3.1. The generalized Pell-Lucas sequences are defined by

$$E_{n+1}(c,d) = 2E_n(c,d) + E_{n-1}(c,d), \qquad n \ge 1$$
(3.1)

with initial conditions

$$E_0(c,d) = c + d$$
, $E_1(c,d) = 2d$,

where $E_n(c,d)$ is the n^{th} the generalized Pell-Lucas numbers. The first few terms of the generalized Pell-Lucas numbers are

$$c + d$$
, $2d$, $c + 5d$, $2c + 12d$, $5c + 29d$, $12c + 70d$

and so on. We remark that:

If
$$c = 1$$
, $d = 1$, then we obtain Pell-Lucas numbers $E_n(1,1) = Q_n$

If
$$c = -\frac{1}{2}$$
, $d = \frac{1}{2}$ we get Pell numbers $E_n\left(-\frac{1}{2}, \frac{1}{2}\right) = P_n$

If $c = \frac{1}{2}$, $d = \frac{1}{2}$ we get Modified Pell-Lucas numbers $E_n\left(\frac{1}{2}, \frac{1}{2}\right) = q_n$

We give Binet-like formula of the generalized Pell-Lucas sequences

Theorem 3.2. (Binet-like formula for the generalized Pell-Lucas sequences)

$$E_n(c,d) = \left(\frac{2d - (c+d)\theta}{\gamma - \theta}\right) \gamma^n + \left(\frac{(c+d)\gamma - 2d}{\gamma - \theta}\right) \theta^n \tag{3.2}$$

where $\gamma = 1 + \sqrt{2}$, $\theta = 1 - \sqrt{2}$ are roots of the equation $x^2 - 2x - 1 = 0$.

Proof: We know that the Binet-like formula of the generalized Pell-Lucas numbers

$$E_n(c,d) = a_1 \gamma^n + a_2 \theta^n$$

On the other hand using the equality and the values n=0.1 we obtain the following the linear system:

$$E_0(c,d) = c + d = a_1 + a_2$$

$$E_1(c,d) = 2d = a_1 \gamma + a_2 \theta$$

The solution of this equation system is,

$$a_1 = \frac{2d - (c+d)\theta}{\gamma - \theta}, \ a_2 = \frac{(c+d)\gamma - 2d}{\gamma - \theta}$$

Thus it is easily seen that the formula (3.2).

Theorem 3.3. The generating function of the generalized Pell-Lucas sequence is

$$\sum_{n=0}^{\infty} E_n(c,d) x^n = \frac{c+d-2cx}{1-2x-x^2}$$
 (3.3)

Proof: Let

$$g(x) = \sum_{n=0}^{\infty} E_n(c, d) x^n$$

be generating function of the generalized Pell-Lucas sequences. Then we have

$$2xg(x) = \sum_{n=0}^{\infty} 2E_n(c,d)x^{n+1}$$

= $2E_0(c,d)x^1 + 2E_1(c,d)x^2 + 2E_2(c,d)x^3 + \dots + 2E_{n-1}(c,d)x^n + \dots$

and

$$x^{2}g(x) = \sum_{n=0}^{\infty} E_{n}(c,d)x^{n+2}$$

$$= E_{0}(c,d)x^{2} + E_{1}(c,d)x^{3} + E_{2}(c,d)x^{4} + \dots + E_{n-2}(c,d)x^{n} + \dots$$

we write:

$$(1 - 2x - x^2)g(x) = E_0(c, d) + [(E_1(c, d) - 2E_0(c, d))]x$$

Now using

$$E_0(c,d) = c + d$$
, $E_1(c,d) = 2d$ and $E_n(c,d) - 2E_{n-1}(c,d) - E_{n-2}(c,d) = 0$

we obtain

$$g(x) = \frac{c + d - 2cx}{1 - 2x - x^2}.$$

Theorem 3.4. The sum of the first n generalized Pell-Lucas numbers is the following:

$$\sum_{i=0}^{n} E_i(c,d) = \frac{d-c + E_{n+2}(c,d) - E_{n+1}(c,d)}{2}$$
(3.4)

Proof: From the definition of the generalized Pell- Lucas sequences

$$E_{n+1}(c,d) = 2E_n(c,d) + E_{n-1}(c,d)$$

For the values of n, we write the following:

$$E_2(c,d) = 2E_1(c,d) + E_0(c,d)$$

$$E_3(c,d) = 2E_2(c,d) + E_1(c,d)$$

:

$$E_{n+2}(c,d) = 2E_{n+1}(c,d) + E_n(c,d)$$

If we now add these equations term by term and using initial conditions we obtain

$$\sum_{i=0}^{n} E_i(c,d) = \frac{c-d+E_{n+2}(c,d)-E_{n+1}(c,d)}{2}.$$

Theorem 3.5. (Catalan's identity for generalized Pell- Lucas - sequences)

$$E_{n+r}(c,d)E_{n-r}(c,d) - E_n(c,d)^2 = a_1 a_2 (-1)^{n-r} Q_r^2$$
(3.5)

where $r \in \mathbb{Z}^+$, n > r , Q_r is the r - th Pell-Lucas number and

$$a_1 = \frac{2d - (c+d)\theta}{\gamma - \theta}, \ a_2 = \frac{(c+d)\gamma - 2d}{\gamma - \theta}.$$

Proof: Considering the Binet-like formula for the generalized Pell-Lucas sequences we have

$$E_{n+r}(c,d)E_{n-r}(c,d) - E_{n^2}(c,d)$$

$$= (a_1\gamma^{n+r} + a_2\theta^{n+r})(a_1\gamma^{n-r} + a_2\theta^{n-r}) - (a_1\gamma^n + a_2\theta^n)^2$$

$$\begin{split} &= a_1 a_2 \gamma^{n+r} \theta^{n-r} + a_1 a_2 \gamma^{n-r} \theta^{n+r} - 2a_1 a_2 (\gamma \theta)^n \\ &= a_1 a_2 (\gamma \theta)^n \left[\frac{\gamma^r}{\theta^r} + \frac{\theta^r}{\gamma^r} - 2 \right] \\ &= a_1 a_2 (\gamma \theta)^{n-r} (\gamma^r - \theta^r)^2 \\ &= a_1 a_2 (-1)^{n-r} (Q_r^2 - 4(-1)^r) \end{split}$$

as required.

Corollary 3.6. (Cassini's Identity)

$$E_{n+1}(c,d)E_{n-1}(c,d) - E_n(c,d)^2 = 8a_1a_2(-1)^{n-1}$$
(3.6)

Proof: Substituting r=1 in Catalan's identity the prof is easily seen. Moreover we remark that $Q_r=2$

Theorem 3.7. (d'Ocagne's Identity) If m > n, then

$$E_m(c,d)E_{n+1}(c,d) - E_n(c,d)E_{m+r}(c,d) = -2\sqrt{2}a_1a_2(-1)^{n+1}Q_{m-n}$$
(3.7)

where

$$a_1 = \frac{2d - (c+d)\theta}{\gamma - \theta}, \ a_2 = \frac{(c+d)\gamma - 2d}{\gamma - \theta}$$

Proof: Using Binet-like formula and $\gamma\theta = -1$

$$\begin{split} E_m(c,d)E_{n+1}(c,d) - E_n(c,d)E_{m+1}(c,d) \\ &= (a_1\gamma^m + a_2\theta^m)(a_1\gamma^{n+1} + a_2\theta^{n+1}) - (a_1\gamma^n + a_2\theta^n)(a_1\gamma^{m+1} + a_2\theta^{m+1}) \\ &= a_1a_2\gamma^m\theta^{n+1} + a_1a_2\gamma^{n+1}\theta^m - a_1a_2\gamma^n\theta^{m+1} - a_1a_2\gamma^{m+1}\theta^n \\ &= -2\sqrt{2}a_1a_2(\gamma\theta)^n(\gamma^{m-n} - \theta^{m-n}) \\ &= 2\sqrt{2}a_1a_2(-1)^{n+1}\sqrt{O_{m-n} - 4(-1)^{m-n}} \end{split}$$

Theorem 3.8. For the integer $n \ge 1$

$$E_n(c,d) = cP_{n-1} + dP_{n+1}$$
(3.8)

where P_n denotes n^{th} Pell number.

Proof: (By induction on n) If n = 1 then the result is obvious. We assume that it is true for n i.e.,

$$E_n(c,d) = cP_{n-1} + dP_{n+1}$$

We'll denote that is true for n + 1,

$$E_{n+1}(c,d) = cP_n + dP_{n+2}$$

By simple calculation using induction's hypothesis we write

$$E_{n+1}(c,d) = 2E_n(c,d) + E_{n-1}(c,d)$$

$$= 2(cP_{n-1} + dP_{n+1}) + (cP_{n-2} + dP_n)$$

$$= c(2P_{n-1} + P_{n-2}) + d(2P_{n+1} + P_n)$$

$$= cP_n + dP_{n+2}$$

which ends the proof.

4. CONCLUSION

In this study we define two new sequences named generalized Lucas sequence and generalized Pell-Lucas sequence. In the next article, we will study the polynomial of these sequences.

REFERENCES

- [1] Stojmenovic, I., *IEEE Trans. Educ.*, **43**, 273, 2000.
- [2] Atkins, J., Geist, R., College Math. J., 18, 328, 1987.
- [3] de Souza, J., Curado, E.M.F., Rego-Monteiro, M.A., J. Phys. A: Math. Gen., 39, 10415, 2006.
- [4] Feingold, A.J., *Proc. Amer. Math. Soc.*, **80**, 379, 1980.
- [5] Fredman, M.L., Tarjan, R.E., *J. ACM*, **34**, 596, 1987.
- [6] Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley-Interscience Publication, New York, 2001.
- [7] Chebotarev, P., *Discrete Appl. Math.*, **156**, 813, 2008.
- [8] Tasci, D., Kilic, E., Appl. Math. Comput., 155(3), 637, 2004.
- [9] Er, M.C., Fibonacci Quart., 22(3), 204, 1984.
- [10] Kilic, E., Tasci, D., *Taiwanese J. Math.*, **10**(6), 1661, 2006.
- [11] Melham, R., *Portugaliae Math.*, **56**(3), 309, 1999.
- [12] Horadam, A.F., Fibonacci Quart., 9(3), 245, 1971.
- [13] Horadam, A.F., Amer. Math. Monthly, **68**, 455, 1961.
- [14] Horadam, A.F., Amer. Math. Monthly, 70, 289, 1963.