ORIGINAL PAPER

BINARY πg -LOCALLY CLOSED SETS

MUTHU VINOTH¹, RAGHAVAN ASOKAN¹, ANNAMALAI THIRIPURAM²

Manuscript received: 13.01.2024; Accepted paper: 16.08.2024;

Published online: 30.09.2024.

Abstract. This paper aims to introduce some new locally closed sets called binary πg -locally closed sets, $b\pi glc^*$ -set, $b\pi glc^{**}$ -set and the relations between them are studied in a binary topological space. The concepts of $b\pi g$ -submaximal space and their related properties have been introduced. Also a characterization of a $b\pi g$ -submaximal space is found, and suitable examples are given.

Keywords: $b\pi g$ -locally closed set; $b\pi glc^*$ -set; $b\pi glc^{**}$ -set.

1. INTRODUCTION AND PRELIMINARIES

In 2011, S.Nithyanantha Jothi and P.Thangavelu [1] introduced topology between two sets and also studied some of their properties. Topology between two sets is the binary structure from X to Y which is defined to be the ordered pairs (A, B) where $A \subseteq X$ and $B \subseteq Y$. In this paper we introduce binary πg -locally closed sets in a binary topological space and discuss some of their properties.

Let X and Y be any two nonempty sets. A binary topology [1] from X to Y is a binary structure $\mathcal{M} \subseteq \mathbb{P}(X) \times \mathbb{P}(Y)$ that satisfies the axioms namely $1.(\phi, \phi)$ and $(X, Y) \in \mathcal{M}$,

 $2.(A_1 \cap A_2, B_1 \cap B_2) \in \mathcal{M}$ whenever $(A_1, B_1) \in \mathcal{M}$ and $(A_2, B_2) \in \mathcal{M}$, and $3.\text{If } \{(A_\alpha, B_\alpha) : \alpha \in \delta\}$ is a family of members of \mathcal{M} , then $(\bigcup_{\alpha \in \delta} A_\alpha, \bigcup_{\alpha \in \delta} B_\alpha) \in \mathcal{M}$.

If \mathcal{M} is a binary topology from X to Y then the triplet (X,Y,\mathcal{M}) is called a binary topological space and the members of \mathcal{M} are called the binary open subsets of the binary topological space (X,Y,\mathcal{M}) . The elements of $X \times Y$ are called the binary points of the binarytopological space (X,Y,\mathcal{M}) . If Y=X then \mathcal{M} is called a binary topology on X in which case we write (X,\mathcal{M}) as a binary topological space.

Definition 1.1.[1] Let X and Y be any two nonempty sets and let (A, B) and $(C, D) \in \mathbb{P}(X) \times \mathbb{P}(Y)$. We say that $(A, B) \subseteq (C, D)$ if $A \subseteq C$ and $B \subseteq D$.

Definition 1.2.[1] Let (X, Y, \mathcal{M}) be a binary topological space and $A \subseteq X$, $B \subseteq Y$. Then (A, B) is called binary closed in (X, Y, \mathcal{M}) if $(X \setminus A, Y \setminus B) \in \mathcal{M}$.

Proposition 1.3.[1] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$.

² Jeppiaar Engineering College, Department of Mathematics, Rajiv Gandhi Salai, Chennai-District, Tamil Nadu, India. E-mail: thiripuram82@gmail.com.

¹ Madurai Kamaraj University, School of Mathematics, Department of Mathematics, Madurai District, Tamil Nadu, India. E-mail: vinothzlatan55@gmail.com, asokan.maths@mkuniversity.ac.in.

Let $(A, B)^{1*} = \cap \{A_{\alpha}: (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha}) \}$ and $(A, B)^{2*} = \cap \{B_{\alpha}: (A_{\alpha}, B_{\alpha}) \text{ is binary closed and } (A, B) \subseteq (A_{\alpha}, B_{\alpha}) \}$. Then $((A, B)^{1*}, (A, B)^{2*})$ is binary closed and $(A, B) \subseteq ((A, B)^{1*}, (A, B)^{2*})$.

Proposition 1.4.[1] Let (X, Y, \mathcal{M}) be a binary topological space and $(A, B) \subseteq (X, Y)$. Let $(A, B)^{1*} = \cup \{A_{\alpha}: (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$ and $(A, B)^{2*} = \cup \{B_{\alpha}: (A_{\alpha}, B_{\alpha}) \text{ is binary open and } (A_{\alpha}, B_{\alpha}) \subseteq (A, B)\}$.

Definition 1.5.[1] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ is called the binary closure of (A, B), denoted by b-cl(A, B) in the binary space (X, Y, \mathcal{M}) where $(A, B) \subseteq (X, Y)$.

Definition 1.6.[1] The ordered pair $((A, B)^{1*}, (A, B)^{2*})$ defined in proposition 1.4 is called the binary interior of (A, B), denoted by b-int(A, B). Here $((A, B)^{1*}, (A, B)^{2*})$ is binary open and $((A, B)^{1*}, (A, B)^{2*}) \subseteq (A, B)$.

Definition 1.7.[1] Let (X, Y, \mathcal{M}) be a binary topological space and let $(x, y) \subseteq (X, Y)$. The binary open set (A, B) is said to be a binary neighborhood of (x, y) if $x \in A$ and $y \in B$.

Proposition 1.8.[1] Let $(A, B) \subseteq (C, D) \subseteq (X, Y)$ and (X, Y, \mathcal{M}) be a binary topological space.

Then, the following statements hold:

1.b- $int(A, B) \subseteq (A, B)$.

2.If (A, B) is binary open, then b-int(A, B) = (A, B).

3.b-int $(A, B) \subseteq b$ -int(C, D).

4.b-int(b-int(A, B)) = b-int(A, B).

 $5.(A,B) \subseteq b\text{-}cl(A,B).$

6.If (A, B) is binary closed, then b - cl(A, B) = (A, B).

 $7.b-cl(A,B) \subseteq b-cl(C,D).$

8.b-cl(b-cl(A,B)) = b-cl(A,B).

Definition 1.9. A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

1.a binary semi-open set [2] if $(A, B) \subseteq b\text{-cl}(b\text{-int}(A, B))$.

2.a binary regular open set [3] if (A, B) = b-int(b-cl(A, B)).

3.a binary π -open [4] if the finite union of binary regular-open sets.

Definition 1.10. A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called

1.a binary g-closed set [5] if $b\text{-}cl(A,B) \subseteq (U,V)$ whenever $(A,B) \subseteq (U,V)$ and (U,V) is binary open.

2.a binary πg -closed [4] if b- $cl(A, B) \subseteq (U, V)$, whenever $(A, B) \subseteq (U, V)$ and (U, V) is binary π -open.

Definition 1.11.[6] A subset (A, B) of a binary topological space (X, Y, \mathcal{M}) is called 1.binary locally closed if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary open and (G, H) is binary closed in (X, Y).

2.binary generalized locally closed (briefly bglc) if $(A, B) = (E, F) \cap (G, H)$ where (E, F) is binary g-open and (G, H) is binary g-closed in (X, Y).

www.josa.ro Mathematics Section

2. BINARY πg -LOCALLY CLOSED SETS

Definition 2.1.A subset (A, B) of (X, Y, \mathcal{M}) is said to be binary πg -locally closed ($b\pi g$ -lc) if (A, B) = (G, H) \cap (U, V) where (G, H) is $b\pi g$ -open and (U, V) is $b\pi g$ -closed in (X, Y, \mathcal{M}).

Definition 2.2.A subset (A, B) of (X, Y, \mathcal{M}) is called $b\pi g$ -lc* if there exists a $b\pi g$ -open set (G, H) and a binary closed set (U, V) of (X, Y, \mathcal{M}) such that (A, B) = (G, H) \cap (U, V).

Definition 2.3.A subset (A, B) of (X, Y, \mathcal{M}) is called $b\pi g$ -lc** if there exists an binary open set (G, H) and a $b\pi g$ -closed set (U, V) of (X, Y, \mathcal{M}) such that (A, B) = (G, H) \cap (U, V).

The collection of all $b\pi g$ -locally closed (resp. $b\pi g$ - lc^* , $b\pi g$ - lc^{**}) sets of a space (X,Y,\mathcal{M}) will be denoted by $B\pi GLC(X,Y)$ (resp. $B\pi GLC^*(X,Y)$, $B\pi GLC^{**}(X,Y)$). From the above definitions we have the following results.

Remark 2.4.

- 1. Every binary locally closed set is $b\pi g$ -lc.
- 2.Every $b\pi g lc^*$ -set is $b\pi g lc$.
- 3. Every binary locally closed set is $b\pi g lc^*$ and $b\pi g lc^{**}$.

However the converses of the above are not true may be seen by the following Examples.

```
Example 2.5.Let X = \{1,2\}, Y = \{a,b\} \text{ and} \mathcal{M} = \{(\varphi,\varphi), (\varphi,\{b\}), (\{1\},\{a\}), (\{1\},Y), (X,Y)\}. Then BLC(X, Y) = \{(\varphi,\varphi), (\varphi,\{b\}), (\{1\},\{a\}), (\{1\},Y), (\{2\},\varphi), (\{2\},\{b\}), (X,\{a\}), (X,Y)\}. BπGLC(X, Y) = \mathbb{P}(X) \times \mathbb{P}(Y).BπGLC*(X, Y) = \{(\varphi,\varphi), (\varphi,\{a\}), (\varphi,\{b\}), (\varphi,Y), (\{1\},\varphi), (\{1\},\{a\}), (\{1\},\{b\}), (\{1\},Y), (\{2\},\varphi), (\{2\},\{b\}), (X,\{a\}), (X,Y)\}.BπGLC**(X, Y) = \mathbb{P}(X) \times \mathbb{P}(Y).
```

Theorem 2.6. For a subset (A, B) of (X, Y, \mathcal{M}) the following are equivalent:

 $1.(A,B) \in B\pi GLC^*(X,Y).$

 $2.(A,B) = (J,K) \cap b\text{-}cl(A,B)$ for some $b\pi g$ -open set (J,K).

3.b-cl(A,B) - (A,B) is $b\pi g$ -closed.

 $4.(A,B) \cup ((X,Y) - b\text{-}cl(A,B))$ is $b\pi g$ -open.

Proof: (1) ⇒ (2): Let $(A, B) \in B\pi GLC^*(X, Y)$. Then there exists a $b\pi g$ -open set (J, K) and a binary closed set (U, V) such that $(A, B) = (J, K) \cap (U, V)$. Since $(A, B) \subseteq (J, K)$ and $(A, B) \subseteq b - cl(A, B)$ we have $(A, B) \subseteq (J, K) \cap b - cl(A, B)$. Conversely, since $b - cl(A, B) \subseteq (U, V)$, $(J, K) \cap b - cl(A, B) \subseteq (J, K) \cap (U, V) = (A, B)$ which implies that $(A, B) = (J, K) \cap b - cl(A, B)$.

- $(2)\Rightarrow (1)$: Since (J,K) is $b\pi g$ -open and b-cl(A,B) is binary closed $(J,K)\cap b\text{-}cl(A,B)\in B\pi GLC^*(X,Y)$.
- (3) \Rightarrow (4): Let $(U,V) = b \cdot cl(A,B) (A,B)$. Then (U,V) is $b\pi g$ -closed by the assumption and $(X,Y) (U,V) = (X,Y) \cap (b \cdot cl(A,B) (A,B))^c = (A,B) \cup ((X,Y) b \cdot cl(A,B))$. But (X,Y) (U,V) is $b\pi g$ -open. This shows that $(A,B) \cup ((X,Y) b \cdot cl(A,B))$ is $b\pi g$ -open.
- $(4) \Rightarrow (3)$: Let $(E,F) = (A,B) \cup ((X,Y) b cl(A,B))$. Then (E,F) is $b\pi g$ -open. This implies that (X,Y) (E,F) is $b\pi g$ -closed and $(X,Y) (E,F) = (X,Y) ((A,B) \cup ((X,Y) b cl(A,B))) = b cl(A,B) \cap ((X,Y) (A,B)) = b cl(A,B) (A,B)$. Thus b cl(A,B) (A,B) is $b\pi g$ -closed.

ISSN: 1844 – 9581 Mathematics Section

- $(4)\Rightarrow (2)$: Let $(E,F)=(A,B)\cup ((X,Y)-b\text{-}cl(A,B))$. Then (E,F) is $b\pi g\text{-}open$. Hence we prove that $(A,B)=(E,F)\cap b\text{-}cl(A,B)$ for some $b\pi g\text{-}open$ set $(E,F)\cdot (E,F)\cap b\text{-}cl(A,B)=((A,B)\cup ((X,Y)-b\text{-}cl(A,B)))\cap b\text{-}cl(A,B)=(b\text{-}cl(A,B)\cap (A,B))\cup (b\text{-}cl(A,B)\cap (X,Y)-b\text{-}cl(A,B))=(A,B)\cup (\phi,\phi)=(A,B)$. Therefore $(A,B)=(E,F)\cap b\text{-}cl(A,B)$.
- $(2)\Rightarrow (4)$: Let $(A,B)=(J,K)\cap b\text{-}cl(A,B)$ for some $b\pi g\text{-}\mathrm{open}$ set (J,K). Then we prove that $(A,B)\cup ((X,Y)-b\text{-}cl(A,B))$ is $b\pi g\text{-}\mathrm{open}$. $(A,B)\cup ((X,Y)-b\text{-}cl(A,B))=((J,K)\cap b\text{-}cl(A,B))\cup ((X,Y)-b\text{-}cl(A,B))=(J,K)\cap (b\text{-}cl(A,B)\cup (X,Y)-b\text{-}cl(A,B))=(J,K)\cap (X,Y)=(J,K)$ which is $b\pi g\text{-}\mathrm{open}$. Thus $(A,B)\cup ((X,Y)-b\text{-}cl(A,B))$ is $b\pi g\text{-}\mathrm{open}$.

Definition 2.7.A binary topological space (X, Y, \mathcal{M}) is called $b\pi g$ -submaximal if every binary dense subset is $b\pi g$ -open.

Theorem 2.8.A binary topological space (X, Y, \mathcal{M}) is $b\pi g$ -submaximal if and only if $\mathbb{P}(X) \times \mathbb{P}(Y) = B\pi GLC^*(X, Y)$.

Proof: Necessity: Let $(A, B) \in \mathbb{P}(X) \times \mathbb{P}(Y)$ and let $(E, F) = (A, B) \cup ((X, Y) - b - cl(A, B))$. Then (E, F) is $b\pi g$ -open and $b - cl(E, F) = b - cl(A, B) \cup ((X, Y) - b - cl(A, B)) = (X, Y)$. This implies that (E, F) is a binary dense subset of (X, Y). By the above Theorem $(A, B) \in B\pi GLC^*(X, Y)$. Therefore, $\mathbb{P}(X) \times \mathbb{P}(Y) = B\pi GLC^*(X, Y)$.

Sufficiency: Let (A,B) be a binary dense subset of (X,Y,\mathcal{M}) . Then $(A,B) \cup ((X,Y)-b\text{-}cl(A,B))=(A,B)\Rightarrow (A,B)\in B\pi GLC^*(X,Y)$ and (A,B) is $b\pi g$ -open. This proves that (X,Y) is $b\pi g$ -submaximal.

Remark 2.9.It follows from definitions that if (X,Y,\mathcal{M}) is bg-submaximal, then it is $b\pi g$ -submaximal. But the converse is not true as seen by the following Example.

Example 2.10 Let $X = \{a,b\}$, $Y = \{1,2\}$ and $\mathcal{M} = \{(\varphi,\varphi),(\varphi,\{1\}),(\{a\},\{1\}),(\{b\},\{1\}),(X,\{1\}),(X,Y)\}$. Then the binary dense sets are $(\varphi,\{1\}),(\varphi,Y),(\{a\},\{1\}),(\{a\},Y),(\{b\},\{1\}),(\{b\},Y),(X,\{1\}),(X,Y),$ bg-open sets are $(\varphi,\varphi),(\varphi,\{1\}),(\{a\},\varphi),(\{a\},\{1\}),(\{b\},\varphi),(\{b\},\{1\}),(X,\varphi),(X,\{1\}),(X,Y)$ and b π g-open sets are $\mathbb{P}(X) \times \mathbb{P}(Y)$. Then it is b π g-submaximal but not bg-submaximal.

Theorem 2.11.For a subset (A, B) of (X, Y, \mathcal{M}) if $(A, B) \in B\pi GLC^{\star\star}(X, Y)$ then there exists an binary open set (S, T) such that $(A, B) = (S, T) \cap b\pi g\text{-cl}(A, B)$ where $b\pi g\text{-cl}(A, B)$ is the $b\pi g\text{-cl}(A, B)$.

Proof: Let $(A, B) \in B\pi GLC^{**}(X, Y)$. Then there exists an binary open set (S, T) and a $b\pi g$ -closed set (G, H) such that $(A, B) = (S, T) \cap (G, H)$. Since $(A, B) \subseteq (S, T)$ and $(A, B) \subseteq b\pi g$ -cl(A, B), we have $(A, B) \subseteq (S, T) \cap b\pi g$ -cl(A, B).

Conversely since $b\pi g\text{-cl}(A, B) \subseteq (G, H)$, we have $(S, T) \cap b\pi g\text{-cl}(A, B) \subseteq (S, T) \cap (G, H) = (A, B)$. Thus $(A, B) = (S, T) \cap b\pi g\text{-cl}(A, B)$.

Theorem 2.12.Let (A, B) and (C, D) be subsets of (X, Y, \mathcal{M}) . If $(A, B) \in B\pi GLC^*(X, Y)$ and $(C, D) \in B\pi GLC^*(X, Y)$ then $(A, B) \cap (C, D) \in B\pi GLC^*(X, Y)$.

Proof: Let (A, B) and $(C, D) \in B\pi GLC^*(X, Y)$. Then there exist $b\pi g$ -open sets (S, T) and (U, V) such that $(A, B) = (S, T) \cap b\text{-}cl(A, B)$ and $(C, D) = (U, V) \cap b\text{-}cl(C, D)$.

www.josa.ro Mathematics Section

Therefore $(A,B) \cap (C,D) = (S,T) \cap b\text{-}cl(A,B) \cap (U,V) \cap b\text{-}cl(C,D) = (S,T) \cap (U,V) \cap b\text{-}cl(A,B) \cap b\text{-}cl(C,D)$ where $(S,T) \cap (U,V)$ is $b\pi g$ -open and b-cl(A,B) and b-cl(C,D) is binary closed. This shows that $(A,B) \cap (C,D) \in B\pi GLC^*(X,Y)$.

Theorem 2.13.If $(A, B) \in B\pi GLC^{**}(X, Y)$ and (C, D) is binary open, then $(A, B) \cap (C, D) \in B\pi GLC^{**}(X, Y)$.

*Proof.*Let $(A, B) \in B\pi GLC^{**}(X, Y)$. Then there exists a binary open set (J, K) and a $b\pi g$ -closed set (G, H) such that $(A, B) = (J, K) \cap (G, H)$. So $(A, B) \cap (C, D) = (J, K) \cap (G, H) \cap (C, D) = (J, K) \cap (C, D) \cap (G, H)$. This proves that $(A, B) \cap (C, D) \in B\pi GLC^{**}(X, Y)$.

Theorem 2.14.If $(A, B) \in B\pi GLC(X, Y)$ and (C, D) is $b\pi g$ -open, then $(A, B) \cap (C, D) \in B\pi GLC(X, Y)$.

Proof:Let (A, B) ∈ B π GLC(X, Y). Then (A, B) = (J, K) \cap (G, H) where (J, K) is b π g-open and (G, H) is b π g-closed. So (A, B) \cap (C, D) = (J, K) \cap (G, H) \cap (C, D) = (J, K) \cap (C, D) \cap (G, H). This implies that (A, B) \cap (C, D) ∈ B π GLC(X, Y).

Theorem 2.15.If $(A, B) \in B\pi GLC^*(X, Y)$ and (C, D) is $b\pi g$ -closed $b\pi$ -open subset of (X, Y), then $(A, B) \cap (C, D) \in B\pi GLC^*(X, Y)$.

Proof:Let (A, B) ∈ B π GLC*(X, Y). Then (A, B) = (J, K) \cap (G, H) where (J, K) is b π g-open and (G, H) is binary closed. (A, B) \cap (C, D) = (J, K) \cap ((G, H) \cap (C, D)) where (J, K) is b π g-open and (G, H) \cap (C, D) is binary closed. Hence (A, B) \cap (C, D) ∈ B π GLC*(X, Y).

Theorem 2.16.Let (A, B) and (U, V) be subsets of (X, Y, \mathcal{M}) and let $(A, B) \subseteq (U, V)$. If (U, V) is $b\pi g$ -open in (X, Y, \mathcal{M}) and $(A, B) \in B\pi GLC^*(U, V, \mathcal{M}/(U, V))$, then $(A, B) \in B\pi GLC^*(X, Y, \mathcal{M})$.

Proof: Suppose (A, B) is bπglc*-set, then there exists a bπg-open set (J, K) of (U, V, \mathcal{M} / (U, V)) such that (A, B) = (J, K) ∩ b-cl_(U,V)(A, B). But b-cl_(U,V)(A, B) = (U, V) ∩ b-cl(A, B). Therefore, (A, B) = (J, K) ∩ (U, V) ∩ b-cl(A, B) where (J, K) ∩ (U, V) is bπg-open. Thus (A, B) ∈ BπGLC*(X, Y, \mathcal{M}).

Theorem 2.17.If (U, V) is $b\pi g$ -closed, $b\pi$ -open set in (X, Y, \mathcal{M}) and $(A, B) \in B\pi GLC^*(U, V, \mathcal{M}/(U, V))$ then $(A, B) \in B\pi GLC^*(X, Y)$.

*Proof:*Let (A, B) ∈ BπGLC*(U, V, $\mathcal{M}/(U, V)$). Then (A, B) = (J, K) ∩ (G, H) where (J, K) is bπg-open and (G, H) is binary closed in (U, V, $\mathcal{M}/(U, V)$). Since (G, H) is binary closed in (U, V, $\mathcal{M}/(U, V)$), (G, H) = (C, D) ∩ (U, V) for some binary closed set (C, D) of (X, Y, \mathcal{M}). Therefore (A, B) = (J, K) ∩ (C, D) ∩ (U, V). Then (C, D) ∩ (U, V) is binary closed. Hence (A, B) ∈ BπGLC*(X, Y).

Theorem 2.18.If (U, V) is binary closed and binary open in (X, Y, \mathcal{M}) and $(A, B) \in B\pi GLC(U, V, \mathcal{M}/(U, V))$, then $(A, B) \in B\pi GLC(X, Y)$.

Proof:Let $(A, B) \in B\pi GLC(U, V, \mathcal{M}/(U, V))$. Then there exists a $b\pi g$ -open set (J, K) and a $b\pi g$ -closed set (G, H) of $(U, V, \mathcal{M}/(U, V))$ such that $(A, B) = (J, K) \cap (G, H)$. Then by the above Theorem $(A, B) \in B\pi GLC(X, Y)$.

Theorem 2.19.If (U,V) is $b\pi g$ -closed, $b\pi$ -open subset of (X,Y) and $(A,B) \in B\pi GLC^{**}(U,V,\mathcal{M}/(U,V))$, then $(A,B) \in B\pi GLC^{**}(X,Y)$.

ISSN: 1844 – 9581 Mathematics Section

*Proof:*Let (A, B) ∈ B π GLC**(U, V, $\mathcal{M}/(U, V)$). Then (A, B) = (J, K) \cap (G, H) where (J, K) is binary open and (G, H) is b π g-closed in (U, V, $\mathcal{M}/(U, V)$). Since (U, V) is b π g-closed b π open subset of (X, Y, \mathcal{M}), then (G, H) is b π g-closed in (X, Y, \mathcal{M}). Therefore (A, B) ∈ B π GLC**(X, Y).

Theorem 2.20.If (A, B) is $b\pi g$ -open and (C, D) is binary open, then (A, B) \cap (C, D) is $b\pi g$ -open

Proof:Let (A, B) be bπg-open. Then b-int(A, B) ⊇ (G, H) whenever (A, B) ⊇ (G, H) and (G, H) is bπ-closed set. Suppose (A, B) ∩ (C, D) ⊇ (G, H), then we prove that b-int((A, B) ∩ (C, D)) ⊇ (G, H). Since (C, D) is binary open, b-int(C, D) = (C, D) ⊇ (G, H). Therefore by assumptions b-int((A, B) ∩ (C, D)) = b-int(A, B) ∩ b-int(C, D) ⊇ (G, H). This proves that (A, B) ∩ (C, D) is bπg-open.

Theorem 2.21. Suppose that the collection of all b π g-open sets of (X, Y, \mathcal{M}) is binary closed under finite unions. Let $(A, B) \in B\pi GLC^*(X, Y)$ and $(C, D) \in B\pi GLC^*(X, Y)$. If (A, B) and (C, D) are separated, then $(A, B) \cup (C, D) \in B\pi GLC^*(X, Y)$.

Proof:Let (A, B), (C, D) ∈ BπGLC*(X, Y). Then there exist bπg-open sets (J, K) and (S, T) of (X, Y, \mathcal{M}) such that (A, B) = (J, K) ∩ b-cl(A, B) and (C, D) = (S, T) ∩ b-cl(C, D). Put (P, Q) = (J, K) ∩ ((X, Y) - b-cl(C, D)) and (U, V) = (S, T) ∩ ((X, Y) - b-cl(A, B)). Then (P, Q) and (U, V) are bπg-open sets and (A, B) = (P, Q) ∩ b-cl(A, B) and (C, D) = (U, V) ∩ b-cl(C, D). Also (P, Q) ∩ b-cl(C, D) = (φ, φ) and (U, V) ∩ b-cl(A, B) = (φ, φ). Hence it follows that (P, Q) and (U, V) are bπg-open sets of (X, Y, \mathcal{M}). Therefore (A, B) ∪ (C, D) = ((P, Q) ∩ b-cl(A, B)) ∪ ((U, V) ∩ b-cl(C, D)) = (P, Q) ∪ (U, V) ∩ b-cl(A, B) ∪ b-cl(C, D). Here (P, Q) ∪ (U, V) is bπg-open by assumption. Thus (A, B) ∪ (C, D) ∈ BπGLC*(X, Y).

4. CONCLUSION

The main aim of this paper is to introduce and study the concepts of binary πg -locally closed sets in a binary topological space and discussed some of their properties with suitable examples are given.

REFERENCES

- [1] Jothi, N. S., Thangavelu, P., Journal of Mathematical Sciences and Computer Applications, 1(3), 95, 2011.
- [2] Jothi, N. S., International Journal of Mathematical Archieve, 7(9), 73, 2016.
- [3] Jothi, N. S., Thangavelu, P., IRA International Journal of Applied Sciences, 4(2), 259, 2016.
- [4] Vinoth, M., Asokan, R., Indian Journal of Natural Sciences, 14(81), 66686, 2023.
- [5] Jothi, N. S., Thangavelu, P., *Journal of Ultra Scientist of Physical Sciences*, **26**(1A), 25, 2014.
- [6] Nethaji, O., Premkumar, R., Asia Mathematika, 7(3), 21, 2023.

www.josa.ro Mathematics Section