ORIGINAL PAPER

GENERALIZED *n*-POLYNOMIAL *P*-FUNCTIONS WITH SOME RELATED INEQUALITIES AND THEIR APPLICATIONS

SERAP OZCAN¹, MAHIR KADAKAL², IMDAT ISCAN³, HURIYE KADAKAL⁴

Manuscript received: 30.12.2023; Accepted paper: 04.10.2024; Published online: 30.12.2024.

Abstract. In this paper, we introduce the notion of generalized n-polynomial P-function. We explore some algebraic properties of this function class. Additionally, we establish a new trapezium type inequality for this generalized class of functions and derive several refinements of the trapezium type inequality for functions whose first derivative in absolute value at a certain power is generalized n-polynomial P-function. Finally, we conclude our paper by exploring some applications of the results we have obtained in the context of special means. Our novel findings generalize previously known results in the literature.

Keywords: Convex function; n-polynomial harmonically convexity; generalized n-polynomial harmonically convexity; Hermite-Hadamard inequality; integral inequalities.

1. INTRODUCTION AND PRELIMINARIES

Let *I* be a nonempty interval in the set of real numbers \mathbb{R} . A function $\Phi: I \to \mathbb{R}$ is called convex if

$$\Phi(ta + (1-t)b) \le t\Phi(a) + (1-t)\Phi(b)$$

for all $a, b \in I$ and $t \in [0,1]$. If this inequality reverses, then f is said to be concave on interval $I \neq \emptyset$.

Convex functions appear in a wide range of topics in pure and applied mathematics, including the theory of inequalities, see, for example, [1-6]. One of the early pivotal results in the theory of convex functions is the following theorem.

Theorem 1. [6] Let $\Phi: I \to \mathbb{R}$ be a convex function on an interval I with a nonempty interior. Then for all $a, b \in I$ with a < b and $\Phi \in L[a, b]$ (Lebesgue integrable on the interval [a, b]), the following inequality holds:

$$\Phi\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} \Phi(x) dx \le \frac{\Phi(a) + \Phi(b)}{2}.$$
 (1)

⁴ Bayburt University, Faculty of Education, Department of Primary Education, 69000 Bayburt, Turkey. E-mail: https://purisestate.com.

¹ Kırklareli University, Faculty of Sciences and Arts, Department of Mathematics, 39100 Kırklareli, Turkey. E-mail: serapozcan87@gmail.com.

² Bayburt University, Faculty of Applied Sciences, Department of Customs Management, 69000 Bayburt, Turkey. E-mail: <a href="maintenant-maint

³ Giresun University, Faculty of Sciences and Arts, Department of Mathematics, 28200 Giresun, Turkey. E-mail: <u>imdati@yahoo.com</u>.

The inequality (1) is well known as the Hermite-Hadamard inequality [6]. For the refinements of the Hermite-Hadamard inequality, interested readers refer to convex functions that have been obtained [7-12].

In [13], Dragomir et al. introduced the class of *P*-function and established Hermite-Hadamard inequality for this class of functions as follows:

Definition 1. A function $\Phi: I \subseteq \mathbb{R} \to \mathbb{R}$ is called *P*-function if

$$\Phi(tx + (1-t)y) \le \Phi(x) + \Phi(y)$$

holds for all $x, y \in I$ and $t \in [0,1]$.

Theorem 2. [13] Let $\Phi: I \to \mathbb{R}$ be a *P*-function. Then the inequality

$$\Phi\left(\frac{a+b}{2}\right) \le \frac{2}{b-a} \int_{a}^{b} \Phi(x) dx \le 2[\Phi(a) + \Phi(b)] \tag{2}$$

holds for all $a, b \in I$ with a < b.

Definition 2. [14] Let $h: J \to \mathbb{R}$ be a non-negative function, $h \neq 0$. We say that $\Phi: I \to \mathbb{R}$ is an h-convex function, if Φ is non-negative and for all $x, y \in I$, $\alpha \in (0,1)$ we have

$$\Phi(\alpha x + (1 - \alpha)y) \le h(\alpha)\Phi(x) + h(1 - \alpha)\Phi(y).$$

Observe that every *P*-function is an *h*-convex function, where *h* here is the constant function 1, that is $h(\alpha) = 1$ for all $\alpha \in J$.

In [15], İşcan and Kadakal gave the following definition and related Hermite-Hadamard inequality:

Definition 3. Let $n \in \mathbb{N}$. A $\Phi: I \subset \mathbb{R} \to \mathbb{R}$ is called *n*-polynomial *P*-function if for every $x, y \in I$ and $t \in [0,1]$,

$$\Phi(tx + (1-t)y) \le \frac{1}{n} \sum_{i=1}^{n} \left[2 - t^{i} - (1-t)^{i} \right] [\Phi(x) + \Phi(y)].$$

Theorem 3. [15] Let Φ : $[a, b] \to \mathbb{R}$ be a n-polynomial P-function. If a < b and $\Phi \in L[a, b]$, then the following Hermite-Hadamard inequality holds:

$$\frac{1}{4} \left(\frac{n}{n+2^{-n}-1} \right) \Phi\left(\frac{a+b}{2} \right) \le \frac{1}{b-a} \int_{a}^{b} \Phi(x) dx \le \left(\frac{\Phi(a) + \Phi(b)}{n} \right) \sum_{i=1}^{n} \frac{2i}{i+1}. \tag{3}$$

Recently, in [16] Kadakal et al. gave the definition of generalized n-polynomial convex functions as follows:

Definition 4. Let $n \in \mathbb{N}$ and $a_i \geq 0$ ($i = \overline{1,n}$) such that $\sum_{i=1}^n a_i > 0$. A non-negative function $\Phi: I \subset \mathbb{R} \to \mathbb{R}$ is called generalized n-polynomial convex function if for every $x, y \in I$ and $t \in [0,1]$,

$$\Phi(tx + (1-t)y) \le \frac{\sum_{i=1}^{n} a_i \left[1 - (1-t)^i\right]}{\sum_{i=1}^{n} a_i} \Phi(x) + \frac{\sum_{i=1}^{n} a_i \left(1 - t^i\right)}{\sum_{i=1}^{n} a_i} \Phi(y) \tag{4}$$

The main purpose of this paper is to introduce the notion of generalized n-polynomial P-functions and establish some trapezium-type inequalities for this class of functions. Some applications to special means of positive real numbers are also given.

2. SOME ALGEBRAIC PROPERTIES OF GENERALIZED n-POLYNOMIAL P-FUNCTIONS

In this section, we are going to give a new definition namely generalized n-polynomial P-function and investigate some of its algebraic properties.

Definition 5. Let $n \in \mathbb{N}$ and $a_i \ge 0$ ($i = \overline{1,n}$) such that $\sum_{i=1}^n a_i > 0$. A function $\Phi: I \subset \mathbb{R} \to \mathbb{R}$ is called generalized n-polynomial P-function if

$$\Phi(tx + (1-t)y) \le \frac{\sum_{i=1}^{n} a_i \left[2 - t^i - (1-t)^i\right] \left[\Phi(x) + \Phi(y)\right]}{\sum_{i=1}^{n} a_i}$$
 (5)

holds for all $x, y \in I$ and $t \in [0,1]$.

We will denote by GPOLP(I) the class of all generalized n-polynomial P-functions on interval I. We note that, every generalized n-polynomial P-function is an h-convex function with the function

$$h(t) = \frac{\sum_{i=1}^{n} a_i \left[2 - t^i - (1 - t)^i \right]}{\sum_{i=1}^{n} a_i}$$

Therefore, if $\Phi, \Psi \in GPOLP(I)$, then

- i) $\Phi + \Psi \in GPOLP(I)$ and for $c \in \mathbb{R}(c \ge 0)c\Phi \in GPOLP(I)$ (see [14], Proposition 9).
- ii) if Φ and Ψ be a similarly ordered function on I, then $\Phi\Psi \in GPOLP(I)$ (see [14], Proposition 10).

For more results on the class GPOLP(I), see [14].

Remark 1. We note that if Φ satisfies (5), then Φ is a non-negative function. For t=0, the inequality (5) reduces to the inequality

$$\Phi(y) \le \Phi(x) + \Phi(y)$$

for all $x, y \in I$. So, one has $\Phi(x) \ge 0$ for all $x \in I$.

Proposition 1. Let $\Phi: I \to \mathbb{R}$ be a *P*-function. Suppose that *n* is a positive integer, and assume that a_1, \ldots, a_n are non-negative real numbers such that $\sum_{i=1}^n a_i > 0$. Then Φ is a generalized *n*-polynomial *P*-function with respect to a_1, \ldots, a_n .

Proof: Let $x, y \in I$, and let $t \in [0,1]$. Note that

$$1 - t^i \ge 1 - t$$
 and $1 - (1 - t)^i \ge 1 - (1 - t) = t$

for all i = 1, ..., n. Then

$$\frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1 - t)^{i}\right]}{\sum_{i=1}^{n} a_{i}} \ge 1.$$

Thus from Φ being a *P*-function, we deduce that

$$\Phi(tx + (1 - t)y)$$

$$\leq \Phi(x) + \Phi(y)$$

$$\leq \frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1 - t)^{i}\right]}{\sum_{i=1}^{n} a_{i}} (\Phi(x) + \Phi(y)).$$

This proves that Φ is a generalized *n*-polynomial *P*-function with respect to a_1, \dots, a_n .

Corollary 1. Every non-negative convex function is a generalized *n*-polynomial *P*-function.

Proof: Let $\Phi: I \to \mathbb{R}$ be a non-negative convex function. Suppose that $x, y \in I$ and that $t \in [0,1]$. Then from Φ being convex, we get

$$\Phi(tx + (1-t)y) \le t\Phi(x) + (1-t)\Phi(y).$$

Thus from Φ being non-negative and $t \in [0,1]$, we obtain

$$\Phi(tx + (1-t)y) \le \Phi(x) + \Phi(y).$$

Hence Φ is a *P*-function. Then from Proposition 1, the result follows.

Theorem 4. Let a and b be real numbers such that 0 < a < b, and let $\{\Phi_{\alpha}\}_{\alpha \in \Lambda}$ be an indexed family of generalized n-polynomial P-functions from [a,b] into $\mathbb R$ for some indexed set Λ . Define the function Φ on [a,b] by $\Phi(x) = \sup\{\Phi_{\alpha}(x) : \alpha \in \Lambda\}$ for all $x \in [a,b]$. Assume that the set $J = \{u \in [a,b] : \Phi(u) < \infty\}$ contains at least two distinct real numbers. Then J is an interval and the function Φ is a generalized n-polynomial P-function from J into $\mathbb R$.

Proof: Let $t \in [0,1]$ and let $x, y \in J$ such that $x \neq y$. Then

$$\begin{split} & \Phi(tx + (1 - t)y) \\ &= \sup_{\alpha \in \Lambda} \Phi_{\alpha}(tx + (1 - t)y) \\ &\leq \sup_{\alpha \in \Lambda} \left[\frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1 - t)^{i} \right] \left[\Phi_{\alpha}(x) + \Phi_{\alpha}(y) \right]}{\sum_{i=1}^{n} a_{i}} \right] \\ &\leq \frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1 - t)^{i} \right]}{\sum_{i=1}^{n} a_{i}} \left[\sup_{\alpha \in \Lambda} \Phi_{\alpha}(x) + \sup_{\alpha \in \Lambda} \Phi_{\alpha}(y) \right] \\ &= \frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1 - t)^{i} \right]}{\sum_{i=1}^{n} a_{i}} \left[\Phi(x) + \Phi(y) \right] \\ &\leq \infty \end{split}$$

This shows simultaneously that J is an interval and that Φ is a generalized n-polynomial P-function on J. This completes the proof of the theorem.

3. HERMITE-HADAMARD INEQUALITY FOR GENERALIZED n-POLYNOMIAL P-FUNCTIONS

In this section, we will establish Hermite-Hadamard inequality for generalized n-polynomial P-functions. We will denote by L[a,b] the space of (Lebesgue) integrable functions on [a,b].

Theorem 5. Let $\Phi: [a, b] \to \mathbb{R}$ be a generalized *n*-polynomial *P*-function. If a < b and $\Phi \in L[a, b]$, then

$$\frac{1}{4} \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i \left(1 - \frac{1}{2^i} \right)} \right) \Phi\left(\frac{a+b}{2} \right) \\
\leq \frac{1}{b-a} \int_a^b \Phi(x) dx \leq \left[\frac{\Phi(a) + \Phi(b)}{\sum_{i=1}^{n} a_i} \right] \sum_{i=1}^{n} a_i \left(\frac{2i}{i+1} \right).$$
(6)

Proof: From the property of the generalized n-polynomial P-function Φ , we get

$$\Phi\left(\frac{a+b}{2}\right) = \Phi\left(\frac{1}{2}[ta + (1-t)b] + \frac{1}{2}[(1-t)a + tb]\right)$$

$$\leq \frac{\sum_{i=1}^{n} a_i \left[2 - 2\left(\frac{1}{2}\right)^i\right]}{\sum_{i=1}^{n} a_i} [\Phi(ta + (1-t)b) + \Phi((1-t)a + tb)].$$

Taking integral with respect to t, we get

$$\begin{split} \Phi\left(\frac{a+b}{2}\right) &\leq \int_0^1 \Phi\left(\frac{a+b}{2}\right) dt \\ &\leq \frac{2\sum_{i=1}^n a_i \left(1-\frac{1}{2^i}\right)}{\sum_{i=1}^n a_i} \left[\int_0^1 \Phi(ta+(1-t)b) dt + \int_0^1 \Phi\big((1-t)a+tb\big) dt\right]. \end{split}$$

Using the substitution x = ta + (1 - t)b, we obtain

$$\int_0^1 \Phi(ta + (1-t)b)dt + \int_0^1 \Phi((1-t)a + tb)dt = \frac{1}{b-a} \int_a^b \Phi(x)dx.$$

Then

$$\Phi\left(\frac{a+b}{2}\right) \le \frac{4\sum_{i=1}^{n} a_{i}\left(1-\frac{1}{2^{i}}\right)}{(b-a)\sum_{i=1}^{n} a_{i}} \int_{a}^{b} \Phi(x)dx.$$

Now, we prove the second inequality in (6).

$$\frac{1}{b-a} \int_{a}^{b} \Phi(x) dx = \int_{0}^{1} \Phi(ta + (1-t)b) dt$$

$$\leq \int_{0}^{1} \left[\frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1-t)^{i} \right] \left[\Phi(a) + \Phi(b) \right]}{\sum_{i=1}^{n} a_{i}} \right] dt$$

$$= \left[\frac{\Phi(a) + \Phi(b)}{\sum_{i=1}^{n} a_{i}} \right] \sum_{i=1}^{n} a_{i} \int_{0}^{1} \left[2 - t^{i} - (1-t)^{i} \right] dt$$

$$= \left[\frac{\Phi(a) + \Phi(b)}{\sum_{i=1}^{n} a_{i}} \right] \sum_{i=1}^{n} a_{i} \left(\frac{2i}{i+1} \right),$$

$$\int_{0}^{1} \left[2 - t^{i} - (1-t)^{i} \right] dt = \frac{2i}{i+1}.$$

where

This completes the proof of the theorem.

Remark 2. For n = 1, the inequality (6) reduces to the inequality (2).

Remark 3. For $a_i = 1$ ($i = \overline{1, n}$), the inequality (6) coincides with the inequality (3).

4. TRAPEZIUM TYPE INEQUALITIES FOR GENERALIZED n-POLYNOMIAL P-FUNCTIONS

In this section, we will establish new estimates that refine Hermite-Hadamard inequality for functions whose first derivative in absolute value is a generalized n-polynomial P-function.

Dragomir and Agarwal [17] gave the following lemma:

Lemma 1. Let I° denotes the interior of I, and let $\Phi: I^{\circ} \to \mathbb{R}$ be a differentiable mapping on I° , $a, b \in I^{\circ}$ with a < b. If $\Phi' \in L[a, b]$, then the following identity holds:

$$\frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b-a} \int_{a}^{b} \Phi(x) dx = \frac{b-a}{2} \int_{0}^{1} (1-2t) \Phi'(ta + (1-t)b) dt.$$

Theorem 6. Let $\Phi: I \to \mathbb{R}$ be a differentiable function on I° (the interior of I), $a, b \in I^{\circ}$ with a < b and assume that $\Phi' \in L[a, b]$. If $|\Phi'|$ is a generalized n-polynomial P-function on interval [a, b], then the following inequality holds:

$$\left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right|$$

$$\leq \frac{b - a}{\sum_{i=1}^{n} a_{i}} \sum_{i=1}^{n} a_{i} \left[\frac{(i^{2} + i + 2)2^{i} - 2}{(i+1)(i+2)2^{i}} \right] A(|\Phi'(a)|, |\Phi'(b)|),$$
(6)

where A is the arithmetic mean.

Proof: Using Lemma 1 and the inequality

$$|\Phi'(ta+(1-t)b)| \leq \frac{\sum_{i=1}^n a_i \left[2-t^i-(1-t)^i\right] \left[|\Phi'(a)|+|\Phi'(b)|\right]}{\sum_{i=1}^n a_i},$$

we get

$$\begin{split} \left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \\ & \leq \frac{b - a}{2} \int_{0}^{1} |1 - 2t| |\Phi'(ta + (1 - t)b)| dt \\ & \leq \frac{b - a}{2} \int_{0}^{1} |1 - 2t| \left(\frac{\sum_{i=1}^{n} a_{i} \left[2 - t^{i} - (1 - t)^{i} \right] \left[|\Phi'(a)| + |\Phi'(b)| \right]}{\sum_{i=1}^{n} a_{i}} \right) dt \\ & \leq \frac{b - a}{2 \sum_{i=1}^{n} a_{i}} \left[|\Phi'(a)| + |\Phi'(b)| \right] \sum_{i=1}^{n} a_{i} \int_{0}^{1} |1 - 2t| \left[2 - t^{i} - (1 - t)^{i} \right] dt \\ & = \frac{b - a}{\sum_{i=1}^{n} a_{i}} \sum_{s=1}^{n} a_{i} \left[\frac{(i^{2} + i + 2)2^{i} - 2}{(i + 1)(i + 2)2^{i}} \right] A(|\Phi'(a)|, |\Phi'(b)|), \end{split}$$

where

$$\int_0^1 |1 - 2t| \left[2 - t^i - (1 - t)^i \right] dt = \frac{(i^2 + i + 2)2^i - 2}{(i+1)(i+2)2^i}$$

and A is the arithmetic mean. So, the proof is completed.

Corollary 2. If we take n = 1 in the inequality (7), then we get the following inequality:

$$\left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \le \frac{b - a}{2} A(|\Phi'(a)|, |\Phi'(b)|).$$

Remark 4. If we take $a_i = 1(i = \overline{1,n})$, then the inequality (7) reduces to the inequality in [15, Theorem 4.1].

Theorem 7. Let $\Phi: I \to \mathbb{R}$ be a differentiable function on I° (the interior of I), $a, b \in I^{\circ}$ with a < b, q > 1, $\frac{1}{p} + \frac{1}{q} = 1$ and assume that $\Phi' \in L[a, b]$. If $|\Phi'|^q$ is a generalized n-polynomial P-function on interval [a, b], then the following inequality holds:

$$\left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \\ \leq \frac{b - a}{2} \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} \left(\frac{4}{\sum_{i=1}^{n} a_{i}} \sum_{j=1}^{n} a_{i} \frac{i}{i + 1} \right)^{\frac{1}{q}} A^{\frac{1}{q}} (|\Phi'(a)|^{q}, |\Phi'(b)|^{q}),$$

$$(7)$$

where A is the arithmetic mean.

Proof: Using Lemma 1, Hölder's integral inequality and the inequality

$$|\Phi'(ta+(1-t)b)|^q \le \frac{\sum_{i=1}^n a_i \left[2-t^i-(1-t)^i\right] \left[|\Phi'(a)|^q+|\Phi'(b)|^q\right]}{\sum_{i=1}^n a_i},$$

we get

$$\begin{split} \left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \\ & \leq \frac{b - a}{2} \left(\int_{0}^{1} |1 - 2t|^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{1} |\Phi'(ta + (1 - t)b)|^{q} dt \right)^{\frac{1}{q}} \\ & \leq \frac{b - a}{2} \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} \left(\frac{|\Phi'(a)|^{q} + ||\Phi'(b)|^{q}}{\sum_{i=1}^{n} a_{i}} \sum_{i=1}^{n} a_{i} \int_{0}^{1} \left[2 - t^{i} - (1 - t)^{i} \right] dt \right)^{\frac{1}{q}} \\ & = \frac{b - a}{2} \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} \left(\frac{4}{\sum_{i=1}^{n} a_{i}} \sum_{i=1}^{n} a_{i} \frac{i}{i + 1} \right)^{\frac{1}{q}} A^{\frac{1}{q}} (|\Phi'(a)|^{q}, |\Phi'(b)|^{q}), \end{split}$$

where

$$\int_0^1 |1 - 2t|^p dt = \frac{1}{p+1}$$

$$\int_0^1 \left[2 - t^i - (1-t)^i \right] dt = \frac{2i}{i+1}$$

This completes the proof of theorem.

Corollary 3. If we take n = 1 in the inequality (8), then we get the following inequality:

$$\left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \le \frac{b - a}{2} \left(\frac{1}{p + 1} \right)^{\frac{1}{p}} A^{\frac{1}{q}} (|\Phi'(a)|^{q}, |\Phi'(b)|^{q}). \tag{8}$$

Remark 5. If we take $a_i = 1(i = \overline{1,n})$ in the inequality (8), then we get the inequality in [15, Theorem 4.2].

Theorem 8. Let $\Phi: I \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable function on I° , $a, b \in I^{\circ}$ with $a < b, q \ge 1$ and assume that $\Phi' \in L[a, b]$. If $|\Phi'|^q$ is a generalized n-polynomial P-function on [a, b], then the following inequality holds for $t \in [0,1]$.

$$\left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \\ \leq \frac{b - a}{2^{2 - \frac{1}{q}}} \left(\frac{1}{\sum_{i=1}^{n} a_{i}} \sum_{i=1}^{n} a_{i} \frac{(i^{2} + i + 2)2^{i} - 2}{(i + 1)(i + 2)2^{i - 1}} \right)^{\frac{1}{q}} A^{\frac{1}{q}} (|\Phi'(a)|^{q}, |\Phi'(b)|^{q}),$$

$$(9)$$

where A is the arithmetic mean.

Proof: From Lemma 1, power-mean integral inequality and the property of the generalized *n*-polynomial *P*-function $|\Phi'|^q$, we obtain

$$\begin{split} \left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \\ & \leq \frac{b - a}{2} \left(\int_{0}^{1} |1 - 2t| dt \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} |1 - 2t| |\Phi'(ta + (1 - t)b)|^{q} dt \right)^{\frac{1}{q}} \\ & \leq \frac{b - a}{2^{2 - \frac{1}{q}}} \left(\frac{|\Phi'(a)|^{q} + |\Phi'(b)|^{q}}{\sum_{i=1}^{n} a_{i}} \sum_{i=1}^{n} a_{i} \int_{0}^{1} |1 - 2t| \left[2 - t^{i} - (1 - t)^{i} \right] dt \right)^{\frac{1}{q}} \\ & = \frac{b - a}{2^{2 - \frac{1}{q}}} \left(\frac{1}{\sum_{i=1}^{n} a_{i}} \sum_{i=1}^{n} a_{i} \frac{(i^{2} + i + 2)2^{i} - 2}{(i + 1)(i + 2)2^{i-1}} \right)^{\frac{1}{q}} A^{\frac{1}{q}} (|\Phi'(a)|^{q}, |\Phi'(b)|^{q}), \end{split}$$

where

$$\int_0^1 |1-2t|dt = \frac{1}{2},$$

$$\int_0^1 |1-2t| \Big[2-t^i-(1-t)^i\Big]dt = \frac{(i^2+i+2)2^i-2}{(i)(i+2)2^{i+1}}$$
 So, the proof is completed.

Corollary 4. Under the assumption of Theorem 8 with q = 1, we get the conclusion of Theorem 6.

Corollary 5. If we take n = 1 in the inequality (9), then we get the following inequality:

$$\left| \frac{\Phi(a) + \Phi(b)}{2} - \frac{1}{b - a} \int_{a}^{b} \Phi(x) dx \right| \le \frac{b - a}{4} A^{\frac{1}{q}} (|\Phi'(a)|^{q}, |\Phi'(b)|^{q}).$$

This inequality coincides with the inequality in [5, Theorem 1].

Corollary 6. If we take $a_i = 1(i = \overline{1,n})$ in the inequality (9), then we get the inequality in [15, Theorem 4.3].

5. APPLICATIONS FOR SPECIAL MEANS

Throughout this section, the following notations will be used for special means of two nonnegative numbers a, b with > a:

1. The arithmetic mean

$$A := A(a,b) = \frac{a+b}{2}, \ a,b \ge 0$$

2. The geometric mean

$$G := G(a, b) = \sqrt{ab}, \ a, b \ge 0$$

3. The harmonic mean

$$H := H(a,b) = \frac{2ab}{a+b}, \ a,b > 0$$

4. The logarithmic mean

$$L:=L(a,b) = \begin{cases} \frac{b-a}{\ln b - \ln a}, & a \neq b; a,b > 0\\ a, & a = b \end{cases}$$

5. The p-logaritmic mean

$$L_p := L_p(a,b) = \begin{cases} \left(\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)}\right)^{\frac{1}{p}}, & a \neq b, p \in \mathbb{R} \setminus \{-1,0\}; a, b > 0. \\ a, & a = b \end{cases}$$

6. The identric mean

$$I:=I(a,b)=\frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{\frac{1}{b-a}},\ a,b>0$$

The following simple relationships are known in the literature:

$$H \le G \le L \le I \le A$$

Proposition 2. Let $a, b \in [0, \infty)$ with a < b and $m \in (-\infty, 0) \cup [1, \infty) \setminus \{-1\}$. Then, one has

$$\frac{1}{4} \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i \left[1 - \left(\frac{1}{2} \right)^i \right]} \right) A^m(a,b) \le L_m^m(a,b) \le A(a^m,b^m) \frac{2}{\sum_{i=1}^{n} a_i} \sum_{i=1}^{n} a_i \left(\frac{2i}{i+1} \right).$$

Proof: The assertion follows from the inequalities (6) for the function

$$\Phi(x)=x^m,\,x\in[0,\infty).$$

Proposition 3. Let $a, b \in (0, \infty)$ with a < b. Then, one has

$$\frac{1}{4} \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i \left[1 - \left(\frac{1}{2} \right)^i \right]} \right) A^{-1}(a, b) \le L^{-1}(a, b)$$

$$\leq H^{-1}(a,b) \frac{2}{\sum_{i=1}^{n} a_i} \sum_{i=1}^{n} a_i \left(\frac{2i}{i+1}\right)$$

Proof: The assertion follows from the inequalities (6) for the function

$$\Phi(x) = x^{-1}, x \in (0, \infty).$$

6. CONCLUSION

In this paper, we have shown new Hermite-Hadamard type inequalities for the newly defined class of functions, the so-called generalized *n*-polynomial *P*-functions. Furthermore, we have derived certain trapezium type inequalities for this class of functions. Additionally, we have investigated some applications of these results in the context of special means.

REFERENCES

- [1] Ali, M.A., Budak, H., Sarıkaya, M.Z., Set, E., *Mathematica Slovaca*, **72**(6), 1489, 2022.
- [2] Iscan, I., Kadakal, H., Kadakal, M., Sigma Journal of Engineering and Natural Sciences, 35(3), 363, 2017.
- [3] Maden, S., Kadakal, H., Kadakal, M., Iscan, I., *Journal of Nonlinear Sciences and Applications*, **10**(12), 6141, 2017.

- [4] Ozcan, S., Filomat, **33**(14), 4377, 2019.
- [5] Pearce, C. E. M., Pecaric, J., Applied Mathematics Letters, 13, 51, 2000.
- [6] Hadamard, J., Journal de Mathematiques Pures et Appliquees, 58, 171, 1893.
- [7] Dragomir S. S., Pearce, C. E. M., Selected Topics on Hermite-Hadamard Inequalities and Its Applications, RGMIA Monograph, Victoria, 2002.
- [8] Iscan, I., Turhan, S., Maden, S., Filomat, 31(19), 5945, 2017.
- [9] Ozcan, S., Journal of Inequalities and Applications, 2020(175), 1, 2020.
- [10] Ozcan, S., Konuralp Journal of Mathematics, **8**(1), 158, 2020.
- [11] Ozcan, S., Turkish Journal of Analysis and Number Theory, 9(3), 65, 2021.
- [12] Ozcan, S., Filomat, 37(28), 9777, 2023.
- [13] Dragomir S.S., Pecaric, J., Persson, L.E., *Soochow Journal of Mathematics*, **21**(3), 335, 2001.
- [14] Varosanec, S., Journal of Mathematical Analysis and Applications, 326(1), 303, 2007.
- [15] Iscan, I., Kadakal, M., International Journal of Mathematical Combinatorics, 3, 16, 2020.
- [16] Kadakal, M., Iscan, I., Kadakal, H., *Hacettepe Journal of Mathematics and Statistics*, Early access, 1–13, 2024. https://doi.org/10.15672/hujms.1310861
- [17] Dragomir, S. S., Agarwal, R. P., Applied Mathematics Letters, 11(5), 91, 1998.