ORIGINAL PAPER

NANO Λ_q -CLOSED SETS IN AN IDEAL NANOTOPOLOGICAL SPACE

ERULAN VEERAMALAI¹, ILANGOVAN RAJASEKARAN², MALAISAMY NAVANEETHAKRISHNAN¹

Manuscript received: 09.08.2024; Accepted paper: 25.04.2025; Published online: 30.06.2025.

Abstract. The notion of nano Λ_g -closed sets is introduced in an ideal nanotopological space. Characterizations and properties of Λ_g -nI-closed sets and Λ_g -nI-open sets are given. A characterization of normal spaces is given in terms of Λ_g -nI-open sets. Also, it is established that an Λ_g -nI-closed subset of a nano I-compact space is nano I-compact compact.

Keywords: Λ_a -nI-closed sets; Λ_a -nI-open sets; nano I-compact.

1. INTRODUCTION AND PRELIMINARIES

In 2017, Rajasekaran et al. [1] introduced the notion of nano Λ -sets in nanotopological spaces. A nano Λ -set is a set H that is equal to its kernel (= saturated set), i.e., the intersection of all open supersets of H. Further, they have introduced and investigated the notion of nano Λ -closed sets by involving nano Λ -sets and closed sets. Rajasekaran et al [2] have introduced and investigated the notion of Λ_g -closed sets in nanotopological spaces and established several properties of such sets. An ideal I [3] on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following conditions.

1. $A \in I$ and $B \subseteq A$ imply $B \in I$ and

2. $A \in I$ and $B \in I$ imply $A \cup B \in I$.

Given a topological space (X, τ) with an ideal I on X. If $\mathcal{D}(X)$ is the family of all subsets of X, a set operator $(.)^* \colon \mathcal{D}(X) \to \mathcal{D}(X)$, called a local function of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I,\tau) = \{x \in X \colon U \cap A \notin I \text{ for every } U \in \tau(x)\}$ where $\tau(x) = \{U \in \tau \colon x \in U\}$ [4]. The closure operator defined by $cl^*(A) = A \cup A^*(I,\tau)$ [5] is a Kuratowski closure operator which generates a topology $\tau^*(I,\tau)$ called the *-topology finer than τ . The topological space together with an ideal on X is called an ideal topological space or an ideal space, denoted by (X,τ,I) . We will simply write A^* for $A^*(I,\tau)$ and τ^* for $\tau^*(I,\tau)$.

Some new notions in the concept of ideal nano topological spaces were introduced by Parimala et al. [6].

Definition 1.1. [7] Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Elements belonging to the

² Tirunelveli Dakshina Mara Nadar Sangam College, PG and Research Department of Mathematics, 627113 Tirunelveli, Tamil Nadu, India. E-mail: sekarmelakkal@gmail.com.

¹ Kamaraj College, PG and Research Department of Mathematics, 628003 Thoothukudi, Tamil Nadu, India. E-mails: veeramalaiveera2@gmail.com; navaneethan65@yahoo.co.in.

same equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the approximation space. Let $X \subseteq U$.

- 1. The lower approximation of X with respect to R is the set of all objects that can be for certain classified as X with respect to R and it is denoted by $L_R(X)$. That is, $L_R(X) = \bigcup_{x \in U} \{R(x): R(x) \subseteq X\}$, where R(x) denotes the equivalence class determined by x.
- 2. The upper approximation of X with respect to R is the set of all objects that can be possibly classified as X with respect to R and it is denoted by $U_R(X)$. That is, $U_R(X) = \bigcup_{x \in U} \{R(x): R(x) \cap X \neq \emptyset\}$.
- 3. The boundary region of X with respect to R is the set of all objects that can be classified neither as X nor as not -X with respect to R and it is denoted by $B_R(X)$. That is, $B_R(X) = U_R(X) L_R(X)$.

Definition 1.2. [8] Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \phi, L_R(X), U_R(X), B_R(X)\}$ where $X \subseteq U$. Then $\tau_R(X)$ satisfies the following axioms: 1. U and $\phi \in \tau_R(X)$,

- 2. The union of the elements of any sub-collection of $\tau_R(X)$ is in $\tau_R(X)$,
- 3. The intersection of the elements of any finite subcollection of $\tau_R(X)$ is in $\tau_R(X)$.

Thus $\tau_R(X)$ is a topology on U called the nanotopology with respect to X and $(U, \tau_R(X))$ is called the nanotopological space. The elements of $\tau_R(X)$ are called nano-open sets (briefly n-open sets). The complement of a n-open set is called n-closed.

Throughout the paper, we denote a nanotopological space by (U, \mathcal{N}) , where $\mathcal{N} = \tau_R(X)$. The nano-interior and nano-closure of a subset A of U are denoted by n-int(A) and n-cl(A), respectively.

Definition 1.3. A subset A of a space (U, \mathcal{N}) is called

- 1. nano semi-open [8] if $A \subseteq n\text{-}cl(n\text{-}int(A))$,
- 2. nano pre-open [8] if $A \subseteq n$ -int(n-cl(A)).

The complements of the above-mentioned sets are called their respective closed sets.

Definition 1.4. A subset A of a space (U, \mathcal{N}) is called a nano generalized closed set (briefly ng-closed) [9] if n- $cl(A) \subseteq B$, whenever $A \subseteq B$ and B is n-open. The complement of ng-closed is called ng-open.

A space (U, \mathcal{N}) with an ideal I on U is called [6] an ideal nano topological space and is denoted by (U, \mathcal{N}, I) . $G_n(x) = \{G_n \mid x \in G_n, G_n \in \mathcal{N}\}$, denotes [6] the family of n-open sets containing x.

Definition 1.5. [6] Let (U, \mathcal{N}, I) be a space with an ideal I on U. Let $(.)_n^*$ be a set operator from $\mathcal{S}(U)$ to $\mathcal{S}(U)$ ($\mathcal{S}(U)$ is the set of all subsets of U). For a subset $A \subseteq U$, $A_n^*(I, \mathcal{N}) = \{x \in U : G_n \cap A \notin I$, for every $G_n \in G_n(x)\}$ is called the nano local function (briefly n-local function) of A with respect to I and \mathcal{N} . We will simply write A_n^* for $A_n^*(I, \mathcal{N})$. Here, an ideal nanotopological space (U, \mathcal{N}, I) is mentioned as a space.

Theorem 1.6. [6] Let (U, \mathcal{N}, I) be a space and A and B be subsets of U. Then 1. $A \subseteq B \Rightarrow A_n^* \subseteq B_n^*$, 2. $A_n^* = n \cdot cl(A_n^*) \subseteq n \cdot cl(A)(A_n^*)$ is a $n \cdot closed$ subset of $n \cdot cl(A)$,

 $3. (A_n^{\star})_n^{\star} \subseteq A_n^{\star},$

- 4. $(A \cup B)_n^* = A_n^* \cup B_n^*$, 5. $V \in \mathcal{N} \Rightarrow V \cap A_n^* = V \cap (V \cap A)_n^* \subseteq (V \cap A)_n^*$, 6. $J \in I \Rightarrow (A \cup J)_n^* = A_n^* = (A - J)_n^*$.
- **Theorem 1.7.** [6] Let (U, \mathcal{N}, I) be a space with an ideal I and $A \subseteq A_n^*$, then $A_n^* = n \cdot cl(A_n^*) = n \cdot cl(A)$.

Definition 1.8. [6] Let (U, \mathcal{N}, I) be a space. The set operator $n - cl^*$ called a nano \star -closure is defined by $n - cl^*(A) = A \cup A_n^*$ for $A \subseteq U$.

It can be easily observed that $n-cl^*(A) \subseteq n-cl(A)$.

Theorem 1.9. [6] In a space (U, \mathcal{N}, I) , if A and B are subsets of U, then the following results are true for the set operator $n - cl^*$.

- $1. A \subseteq n cl^*(A),$
- 2. $n cl^*(\phi) = \phi$ and $n cl^*(U) = U$,
- 3. If $A \subseteq B$, then $n cl^*(A) \subseteq n cl^*(B)$,
- $4. n-cl^*(A) \cup n-cl^*(B) = n-cl^*(A \cup B),$
- $5. n-cl^*(n-cl^*(A)) = n-cl^*(A).$

Definition 1.10. [6] A subset A of a space (U, \mathcal{N}, I) is said to be nano-I-open (briefly nI-open) if $A \subseteq n\text{-}int(A_n^*)$.

Definition 1.11. [10] A subset A of a space (U, \mathcal{N}, I) is $n \star$ -dense in itself (resp. $n \star$ -closed) if $A \subseteq A_n^{\star}$ (resp. $A_n^{\star} \subseteq A$).

Definition 1.12. A subset A of a space (U, \mathcal{N}, I) is called a nano I_g -closed (briefly nI_g -closed) [10] if $A_n^* \subseteq B$ whenever $A \subseteq B$ and B is n-open. The complement of a nI_g -closed set is said to be nI_g -open.

Definition 1.13 An ideal I in a space (U, \mathcal{N}, I) is said to be

- 1. \mathcal{N} -codense ideal [6] if $\mathcal{N} \cap I = \{\phi\}$.
- 2. completely \mathcal{N} -codense ideal [11] if n- $PO(U) \cap I = \{\phi\}$, where n-PO(U) is the family of all np-open sets in (U, \mathcal{N}) .

2. ON Λ_q -CLOSED SETS

Definition 2.1. A subset H of U in an ideal nanotopological space (U, \mathcal{N}, I) is said to be

- 1. Λ_g -nI-closed if $H_n^* \subseteq K$ whenever $H \subseteq K$ and K is $n\lambda$ -open.
- 2. Λ_q -nI-open if its complement is Λ_q -nI-closed.

Proposition 2.2. In an ideal nanotopological space (U, \mathcal{N}, I) , for a subset H of U the following statements are hold;

- 1. If Λ_q -nI-closed set then nI_q -closed,
- 2. If $n\Lambda_q$ -closed set ([2], Definition 3.3) then nI_q -closed.

Proof:

- 1. It follows from the fact that every *n*-open set is $n\lambda$ -open.
- 2. It follows from the Definitions of $n\Lambda_a$ -closed and nI_a -closed.

Remark 2.3. The converse of Proposition 2.2 need not be true, as seen from the following Example.

Example 2.4. Let $U = \{r_1, r_2, r_3\}$ with $U/R = \{\{r_3\}, \{r_1, r_2\}\}$ and $X = \{r_1, r_2\}$. Then $\mathcal{N} = \{\phi, \{r_1, r_2\}, U\}$. Let be an ideal $I = \{\phi\}$. In the ideal nanotopological space (U, \mathcal{N}, I) , then the subset $\{r_1, r_3\}$ is nI_g -closed but not Λ_g -nI-closed and $n\Lambda_g$ -closed.

The following Theorem gives characterizations of Λ_a -nI-closed sets.

Theorem 2.5. Let H be a Λ_g -nI-closed subset of U in an ideal nanotopological space (U, \mathcal{N}, I) . Then the following results are equivalent;

- 1. *H* is Λ_q -*nI*-closed,
- 2. $n-cl^*(H) \subseteq 0$ whenever $H \subseteq 0$ and 0 is $n\lambda$ -open in U,
- 3. $n-cl^*(H) H$ contains no nonempty $n\lambda$ -closed set,
- 4. $H_n^{\star} H$ contains no nonempty $n\lambda$ -closed set.

Proof: (1) $\stackrel{\Rightarrow}{\Rightarrow}$ (2) Let $H \subseteq O$ where O is $n\lambda$ -open in U. Since H is Λ_g -nI-closed, $H_n^* \subseteq O$ and so n- $cl^*(H) = H \cup H_n^* \subseteq O$.

- (2) \Rightarrow (3) Let K be a $n\lambda$ -closed subset such that $K \subseteq n cl^*(H) H$. Then $K \subseteq n cl^*(H)$. Also $K \subseteq cl^*(H) H \subseteq U H$ and hence $H \subseteq U K$ where U K is $n\lambda$ -open. By (2) $n cl^*(H) \subseteq U K$ and so $K \subseteq U n cl^*(H)$. Thus $K \subseteq n cl^*(H) \cap U n cl^*(H) = \phi$.
- (3) $\stackrel{\Rightarrow}{=}$ (4) $H_n^{\star} H = H \cup H_n^{\star} H = n c l^{\star}(H) H$ which has no nonempty $n\lambda$ -closed subset by (3).
- (4) \Rightarrow (1) Let $H \subseteq O$ where O is $n\lambda$ -open. Then $U O \subseteq U H$ and so $H_n^* \cap (U O) \subseteq H_n^* \cap (U H) = H_n^* H$. Since H_n^* is always a n-closed subset and U O is $n\lambda$ -closed, $H_n^* \cap (U O)$ is a $n\lambda$ -closed set contained in $H_n^* H$ and hence $H_n^* \cap (U O) = \phi$. by (4). Thus $H_n^* \subseteq O$ and H is Λ_g -nI-closed.

Proposition 2.6. For a subset H of U in an ideal nanotopological space (U, \mathcal{N}, I) , each $n \star$ -closed set is Λ_a -nI-closed.

Proof: Let H be a $n \star$ -closed. To prove H is Λ_g -nI-closed, let G be any $n\lambda$ -open set such that $H \subseteq G$. Since H is $n \star$ -closed, $H_n^{\star} \subseteq H \subseteq G$. Thus H is Λ_g -nI-closed.

Remark 2.7. The converse of Proposition 2.6 is need not be true as seen from the following Example.

Example 2.8. Let $U = \{r_1, r_2, r_3\}$ with $U/R = \{\{r_1\}, \{r_2, r_3\}\}$ and $X = \{r_1\}$. Then $\mathcal{N} = \{\phi, \{r_1\}, U\}$. Let be an ideal $I = \{\phi\}$. In the ideal nanotopological space (U, \mathcal{N}, I) , then the subset $\{r_2\}$ is Λ_q -nI-closed set but not $n \star$ -closed.

Theorem 2.9. In an ideal nanotopological space (U, \mathcal{N}, I) , for each $H \in I$, H is Λ_a -nI-closed.

Proof: Let $H \in I$ and let $H \subseteq G$ where G is $n\lambda$ -open. Since $H \in I$, $H_n^* = \phi \subseteq G$. It follows that H is Λ_q -nI-closed.

Theorem 2.10. If (U, \mathcal{N}, I) is an ideal nanotopological space, then H_n^* is always Λ_g -nI-closed for each subset H of U.

Proof: Let $H_n^* \subseteq G$ where G is $n\lambda$ -open. Since $(H_n^*)_n^* \subseteq H_n^*$, we have $(H_n^*)_n^* \subseteq G$. Hence H_n^* is Λ_g -nI-closed.

Theorem 2.11. Let (U, \mathcal{N}, I) be an ideal nanotopological space. If for a subset H of U then each Λ_q -nI-closed, $n\lambda$ -open set is $n \star$ -closed.

Proof: Let H be Λ_g -nI-closed and $n\lambda$ -open. We have $H \subseteq H$ where H is $n\lambda$ -open. Since H is Λ_g -nI-closed, $H_n^* \subseteq H$. This proves that H is $n \star$ -closed.

Definition 2.12. An ideal nanotopological space (U, \mathcal{N}, I) is said to be a nano T_I -space if every nI_q -closed subset of U is a n *-closed set.

Lemma 2.13. If (U, \mathcal{N}, I) is a nano T_1 -space and H is an nI_g -closed set, then H is a $n \star$ -closed set.

Corollary 2.14. If (U, \mathcal{N}, I) is a nano T_I -space and H is a Λ_g -nI-closed set, then H is $n \star$ -closed set.

Proof: By assumption H is Λ_g -nI-closed in (U, \mathcal{N}, I) and so by Proposition 2.2, H is nI_g -closed. Since (U, \mathcal{N}, I) is a nano T_I -space, by Definition 2.12, H is $n \star$ -closed.

Corollary 2.15. Let (U, \mathcal{N}, I) be an ideal nanotopological space and H be a Λ_g -nI-closed set. Then the following results are equivalent;

- 1. H is $n \star$ -closed,
- 2. $n-cl^*(H) H$ is a $n\lambda$ -closed set,
- 3. $H_n^* H$ is a $n\lambda$ -closed set.

Proof: (1) \Rightarrow (2) By (1) H is $n \star$ -closed. Hence $H_n^{\star} \subseteq H$ and $n \cdot cl^{\star}(H) - H = (H \cup H_n^{\star}) - H = \phi$ which implies that $n\lambda$ -closed.

- (2) \Rightarrow (3) $H_n^{\star} H = H \cup H_n^{\star} H = n c l^{\star}(H) H$ which implies that $n\lambda$ -closed by (2).
- (3) $\stackrel{\Rightarrow}{=}$ (1) Since H is Λ_g -nI-closed, by Theorem 2.5 $H_n^{\star} H$ contains no non-empty $n\lambda$ -closed set. By assumption (3) $H_n^{\star} H$ is $n\lambda$ -closed and hence $H_n^{\star} H = \phi$. Which proves that $H_n^{\star} \subseteq H$ and H is $n \star$ -closed.

Proposition 2.16. In an ideal nanotopological space (U, \mathcal{N}, I) , for a subset H of U, each $n\Lambda_g$ -closed set is a Λ_g -nI-closed set.

Proof: Let H be a $n\Lambda_g$ -closed set. Let G be any $n\lambda$ -open set such that $H \subseteq G$. Since H is $n\Lambda_g$ -closed, $n\text{-}cl(H) \subseteq G$. So, $H^* \subseteq n\text{-}cl(H) \subseteq G$ and hence H is $\Lambda_g\text{-}nI\text{-}$ closed.

Remark 2.17. The converse of Proposition 2.16 need not be true, as seen from the following Example.

Example 2.18. Let $U = \{r_1, r_2, r_3\}$ with $U/R = \{\{r_1\}, \{r_2, r_3\}\}$ and $X = \{r_1\}$. Then $\mathcal{N} = \{\phi, \{r_1\}, U\}$. Let be an ideal $I = \{\phi, \{r_1\}, \{r_2\}, \{r_1, r_2\}\}$. In the ideal nanotopological space (U, \mathcal{N}, I) , then the subset $\{r_1\}$ is a Λ_q -nI-closed set but not $n\Lambda_q$ -closed.

Theorem 2.19. If (U, \mathcal{N}, I) is an ideal nanotopological space and H is a $n \star$ -dense in itself, Λ_a -nI-closed subset of U, then H is $n\Lambda_a$ -closed.

Proof: Let $H \subseteq G$ where G is $n\lambda$ -open. Since H is Λ_g -nI-closed, $H_n^* \subseteq G$. As H is $n \star$ -dense in itself, n- $cl(H) = H_n^*$. Thus n- $cl(H) \subseteq G$ and hence H is $n\Lambda_g$ -closed.

Corollary 2.20. If (U, \mathcal{N}, I) is any ideal nanotopological space where $I = \{\phi\}$, then H is Λ_g -nI-closed if and only if H is $n\Lambda_g$ -closed.

Proof: In (U, \mathcal{N}, I) , if $I = \{\phi\}$ then $H_n^* = n - cl(H)$ for the subset H. H is $\Lambda_g - nI$ -closed $\Leftrightarrow H_n^* \subseteq G$ whenever $H \subseteq G$ and G is $n\lambda$ -open $\Leftrightarrow n - cl(H) \subseteq G$ whenever $H \subseteq G$ and G is $n\lambda$ -open $\Leftrightarrow H$ is $n\Lambda_g$ -closed.

Corollary 2.21. In an ideal nanotopological space (U, \mathcal{N}, I) where I is \mathcal{N} -codense, if H is a ns-open set and Λ_g -nI-closed subset of U, then H is $n\Lambda_g$ -closed.

Proof: *H* is $n \star$ -dense in itself. By Theorem 2.19, *H* is $n\Lambda_q$ -closed.

Remark 2.22. In an ideal nanotopological space (U, \mathcal{N}, I) , the family of ng-closed sets and the family of Λ_g -nI-closed sets are independent of each other as shown in the following Example.

Example 2.23.

- 1. In Example 2.4, the subset $\{r_1, r_3\}$ is ng-closed set but not Λ_q -nI-closed.
- 2. In Example 2.18, the subset $\{r_1\}$ is Λ_g -nI-closed set but not ng-closed.

Remark 2.24. These relations are shown in the following diagram.

$$n\text{-closed} \xrightarrow{} n\Lambda g\text{-closed} \xrightarrow{} I_g\text{-closed}$$

$$\downarrow \downarrow \uparrow$$

$$n \star\text{-closed} \xrightarrow{} \Lambda_g\text{-}nI\text{-open} \xrightarrow{\leftrightarrow} ng\text{-closed}$$

Theorem 2.25. Let (U, \mathcal{N}, I) be an ideal nanotopological space and $H \subseteq U$. Then H is Λ_g -nI-closed if and only if H = K - S where K is $n \star$ -closed and S contains no nonempty $n\lambda$ -closed set

Proof: If H is $n\Lambda_g$ -closed, then by Theorem 2.5 (4), $S = H_n^* - H$ contains no nonempty $n\lambda$ -closed set. If $K = n - cl^*(H)$, then K is $n \star$ -closed such that $K - S = (H \cup H_n^*) - (H_n^* - H) = (H \cup H_n^*) \cap (H_n^* \cap H^c)^c = (H \cup H_n^*) \cap ((H_n^*)^c \cup H) = (H \cup H_n^*) \cap (H \cup (H_n^*)^c) = H \cup (H_n^* \cap (H_n^*)^c) = H$.

Conversely, suppose H = K - S where K is $n \star$ -closed and S contains no nonempty $n\lambda$ -closed set. Let G be a $n\lambda$ -open set such that $H \subseteq G$. Then $K - S \subseteq G$ which implies that $K \cap (U - G) \subseteq S$. Now $H \subseteq K$ and $K_n^{\star} \subseteq K$ then $H_n^{\star} \subseteq K_n^{\star}$ and so $H_n^{\star} \cap (U - G) \subseteq K_n^{\star} \cap (U - G) \subseteq K \cap (U - G) \subseteq S$. Since $H_n^{\star} \cap (U - G)$ is $n\lambda$ -closed, by hypothesis $H_n^{\star} \cap (U - G) = \phi$ and so $H_n^{\star} \subseteq G$. Thus H is Λ_G -nI-closed.

Theorem 2.26. Let (U, \mathcal{N}, I) be an ideal nanotopological space and $H \subseteq U$. If $H \subseteq K \subseteq H_n^*$, then $H_n^* = K_n^*$ and K is n *-dense in itself.

Proof: Since $H \subseteq K$, then $H_n^* \subseteq K_n^*$ and since $K \subseteq H_n^*$, then $K_n^* \subseteq (H_n^*)_n^* \subseteq H_n^*$. Therefore $H_n^* = K_n^*$ and $K \subseteq H_n^* \subseteq K_n^*$.

Theorem 2.27. Let (U, \mathcal{N}, I) be an ideal nanotopological space. If H and K are subsets of U such that $H \subseteq K \subseteq n\text{-}cl^*(H)$ and H is $\Lambda_q\text{-}nI\text{-}closed$, then K is $\Lambda_q\text{-}nI\text{-}closed$.

Proof: Since H is Λ_g -nI-closed, then by Theorem 2.5(3), n- $cl^*(H) - H$ contains no nonempty $n\lambda$ -closed set. But n- $cl^*(K) - K \subseteq n$ - $cl^*(H) - H$ and so n- $cl^*(K) - K$ contains no nonempty $n\lambda$ -closed set. This proves that K is Λ_g -nI-closed.

Corollary 2.28. Let (U, \mathcal{N}, I) be an ideal nanotopological space. If H and K are subsets of U such that $H \subseteq K \subseteq H_n^*$ and H is Λ_q -nI-closed, then H and K are $n\Lambda_q$ -closed sets.

Proof: Let H and K be subsets of U such that $H \subseteq K \subseteq H_n^*$. Then $H \subseteq K \subseteq H_n^* \subseteq n\text{-}cl^*(H)$. Since H is $\Lambda_g\text{-}nI\text{-}closed$, by Theorem 2.27, K is $\Lambda_g\text{-}nI\text{-}closed$. Since $H \subseteq K \subseteq H_n^*$, we have $H_n^* = K_n^*$. Hence $H \subseteq H_n^*$ and $K \subseteq K_n^*$. Thus H is $n \star\text{-}dense$ in itself and H is $n \star\text{-}dense$ in itself and by Theorem 2.19, H and H are H are H and H are H and H are H and H are H are H and H are H are H and H are H and H are H are H and H are H and H are H and H are H are H and H are H ar

The characterization of Λ_q -nI-open sets are given in the following Theorem.

Theorem 2.29. Let (U, \mathcal{N}, I) be an ideal nanotopological space and $H \subseteq U$. Then H is Λ_g -nI-open if and only if $K \subseteq n$ - $int^*(H)$ whenever K is $n\lambda$ -closed and $K \subseteq H$.

Proof: Suppose H is Λ_g -nI-open. If K is $n\lambda$ -closed and $K \subseteq H$, then $U - H \subseteq U - K$ and so $n\text{-}cl^*(U - H) \subseteq U - K$ by Theorem 2.5(2). Therefore $K \subseteq U - n\text{-}cl^*(U - H) = n\text{-}int^*(H)$. Hence $K \subseteq n\text{-}int^*(H)$.

Conversely, suppose the condition holds. Let G be a $n\lambda$ -open set such that $U - H \subseteq G$. Then $U - G \subseteq H$ and so $U - G \subseteq n\text{-}int^*(H)$. Therefore $n\text{-}cl^*(U - H) \subseteq G$. By Theorem 2.5(2), U - H is $\Lambda_g\text{-}nI\text{-}closed$. Which proves that H is $\Lambda_g\text{-}nI\text{-}open$.

Corollary 2.30. Let (U, \mathcal{N}, I) be an ideal nanotopological space and $H \subseteq U$. If H is Λ_g -nI-open, then $K \subseteq int^*(H)$ whenever K is n-closed and $K \subseteq H$.

The properties of Λ_a -nI-closed sets are given in the following Theorem.

Theorem 2.31. Let (U, \mathcal{N}, I) be an ideal nanotopological space and $H \subseteq U$. If H is Λ_g -nI-open and $int^*(H) \subseteq K \subseteq H$, then K is Λ_g -nI-open.

Proof: Since $int^*(H) \subseteq K \subseteq H$, we have $U - H \subseteq U - K \subseteq U - int^*(H) = n - cl^*(U - H)$. By assumption H is $\Lambda_g - nI$ -open and so U - H is $\Lambda_g - nI$ -closed. Hence, by Theorem 2.27, U - H is $\Lambda_g - nI$ -closed and K is $\Lambda_g - nI$ -open.

The following Theorem gives a characterization of Λ_g -nI-closed sets in terms of Λ_g -nI-open sets.

Theorem 2.32. Let (U, \mathcal{N}, I) be an ideal nanotopological space and $H \subseteq U$. Then the following results are equivalent.

- 1. *H* is Λ_g -*nI*-closed,
- 2. $H \cup (U H_n^*)$ is Λ_q -nI-closed,
- 3. $H_n^{\star} H$ is Λ_g -nI-open.

Proof: (1) $\stackrel{\Rightarrow}{\Rightarrow}$ (2) Let G be any $n\lambda$ -open set such that $H \cup (U - H_n^*) \subseteq G$. Then $G^c \subseteq [A \cup (U - H_n^*)]^c = [H \cup (H_n^*)^c]^c = H_n^* \cap H^c = H_n^* - H$ where G^c is $n\lambda$ -closed. Since H is Λ_g -nI-closed, by Theorem 2.5(4), $G^c = \phi$ and U = G. Thus U is the only $n\lambda$ -open set containing $H \cup (U - H_n^*)$ and hence $H \cup (U - H_n^*)$ is Λ_g -nI-closed.

- (2) \Rightarrow (3) $(H_n^{\star} H)^c = (H_n^{\star} \cap H^c)^c = H \cup (H_n^{\star})^c = H \cup (U H_n^{\star})$ which is Λ_g -n*I*-closed by (2). This proves that $H_n^{\star} H$ is Λ_g -n*I*-open.
- (3) $\stackrel{\Rightarrow}{\Rightarrow}$ (1) Since $H_n^\star H$ is Λ_g -nI-open, $(H_n^\star H)^c = H \cup (H_n^\star)^c$ is Λ_g -nI-closed. Hence by Theorem 2.5(4) $(H \cup (H_n^\star)^c)_n^\star (H \cup (H_n^\star)^c)$ contains no nonempty $n\lambda$ -closed subset. But $(H \cup (H_n^\star)^c)_n^\star (H \cup (H_n^\star)^c) = (H \cup (H_n^\star)^c)_n^\star \cap (H \cup (H_n^\star)^c)_n^\star \cap (H_n^\star \cup (H_n^\star)^c)_n^\star \cap (H_n^\star \cap H_n^\star) = (H_n^\star \cup ((H_n^\star)^c)_n^\star) \cap (H_n^\star \cap H_n^\star) = H_n^\star \cap H_n$

Theorem 2.33. Let (U, \mathcal{N}, I) be an ideal nanotopological space. Then every subset of U is nano Λ_q -nI-closed if and only if every $n\lambda$ -open set is $n \star$ -closed.

Proof: Suppose every subset of U is Λ_g -nI-closed. Let G be $n\lambda$ -open in U. Then $G \subseteq G$ and G is Λ_g -nI-closed by assumption implies $G_n^* \subseteq G$. Hence G is $n \star$ -closed.

Conversely, let $H \subseteq U$ and G be $n\lambda$ -open such that $H \subseteq G$. Since G is $n \star$ -closed by assumption, we have $H_n^{\star} \subseteq G_n^{\star} \subseteq G$. Thus H is Λ_g -nI-closed.

The following Theorem gives a characterization of normal spaces in terms of Λ_g -nI-open sets.

Theorem 2.34. Let (U, \mathcal{N}, I) be an ideal nanotopological space where I is completely \mathcal{N} -codense. Then the following results are equivalent;

- 1. *U* is normal,
- 2. For any disjoint n-closed sets H and K, there exist disjoint Λ_g -nI-open sets E and F such that $H \subseteq E$ and $K \subseteq F$,
- 3. For any *n*-closed set *H* and *n*-open set *F* containing *H*, there exists an Λ_g -nI-open set *E* such that $H \subseteq E \subseteq n$ - $cl^*(E) \subseteq F$.

Proof: (1) $\stackrel{\Rightarrow}{=}$ (2) The proof follows from the fact that every *n*-open set is Λ_g -*nI*-open.

- (2) \Longrightarrow (3) Suppose H is n-closed and F is a n-open set containing H. Since H and U-F are disjoint n-closed sets, there exist disjoint Λ_g -nI-open sets E and S such that $H \subseteq E$ and $U-F \subseteq S$. Since U-F is $n\lambda$ -closed and S is Λ_g -nI-open, $U-F \subseteq n$ - $int^*(S)$. Then U-n- $int^*(S) \subseteq F$. Again $F \cap S = \phi$ which implies that $E \cap n$ - $int^*(S) = \phi$ and so $E \subseteq U-n$ - $int^*(S)$. Then n- $cl^*(E) \subseteq U-n$ - $int^*(S) \subseteq F$ and thus E is the required Λ_g -nI-open sets with $H \subseteq E \subseteq n$ - $cl^*(E) \subseteq F$.
- (3) $\stackrel{\Rightarrow}{\Rightarrow}$ (1) Let H and K be two disjoint n-closed subsets of U. Then H is a n-closed set and U-K an n-open set containing H. By hypothesis, there exists a Λ_g -nI-open set E such that $H \subseteq E \subseteq n$ - $cl^*(E) \subseteq U-K$. Since E is Λ_g -nI-open and H is $n\lambda$ -closed we have $H \subseteq n$ - $int^*(E)$. Since E is completely \mathcal{N} -codense ideal, $\mathcal{N}^* \subseteq \mathcal{N}^\alpha$ and so n- $int^*(E)$ and U-n- $cl^*(E) \in \mathcal{N}^\alpha$. Hence $H \subseteq n$ - $int^*(E) \subseteq n$ -int(n-cl(n-int(n- $int^*(E)))) = G$ and $K \subseteq U-n$ - $int^*(E) \subseteq n$ - $int^*(E$
- **Definition 2.35.** A subset H of an ideal nanotopological space (U, \mathcal{N}, I) is called a nano $\Lambda_{g\alpha}$ -closed set if $n\text{-}cl_{\alpha}(H) \subseteq G$ whenever $H \subseteq G$ and G is $n\lambda$ -open. The complement of nano $\Lambda_{g\alpha}$ -closed set is called a nano $\Lambda_{g\alpha}$ -open.
- If $I = \mathcal{T}$, it is not difficult to see that Λ_g -nI-closed sets coincide with nano $\Lambda_{g\alpha}$ -closed sets and so we have the following Corollary.
- **Corollary 2.36.** Let (U, \mathcal{N}, I) be an ideal nanotopological space where $I = \mathcal{T}$. Then the following statements are equivalent;
- 1. *U* is normal,
- 2. For any disjoint *n*-closed sets *H* and *K*, there exists a disjoint nano $\Lambda_{g\alpha}$ -open sets *X* and *Y* such that $H \subseteq X$ and $K \subseteq Y$,
- 3. For any n-closed set H and n-open set Y containing H, there exists a nano $\Lambda_{g\alpha}$ -open set X such that $H \subseteq X \subseteq n$ - $cl_{\alpha}(X) \subseteq Y$.
- **Definition 2.37.** A subset H of an ideal nanotopological space is said to be nI-compact or compact modulo nI if for every n-open cover $\{X_{\alpha} | \alpha \in \Delta\}$ of H, there exists a finite subset Δ_0 of Δ such that $H \bigcup \{X_{\alpha} | \alpha \in \Delta_0\} \in nI$. The space (U, \mathcal{N}, I) is nI-compact if X is nI-compact as a subset.
- **Corollary 2.38.** Let (U, \mathcal{N}, I) be an ideal nanotopological space for a subset H of U. If H is a Λ_a -nI-closed subset of U, then H is nI-compact.

Proof: The proof follows from the fact that every Λ_q -nI-closed is nI_q -closed.

4. CONCLUSIONS

This paper introduces a new class of sets in an ideal nanotopological space, called nano Λ_g -closed sets. Suitable examples are provided together with the characterizations and features of Λ_g -nI-closed sets and Λ_g -nI-open sets. Normal spaces are characterized in terms of Λ_g -nI-open sets. Furthermore, it is proven that a nano \mathcal{I} -compact space is nano \mathcal{I} -compact

when its subset is Λ_q -nI- closed.

REFERENCES

- [1] Rajasekaran, I., Nethaji, O., Journal of New Theory, 16, 52, 2017.
- [2] Rajasekaran, I., Nethaji, O., *Journal of New Theory*, **17**, 38, 2017.
- [3] Vaidyanathaswamy, R., Set Topology, Chelsea Publishing Company, New York, 1946.
- [4] Kuratowski, K., *Topology*, Vol. I. Academic Press, New York, 1966.
- [5] Vaidyanathaswamy, R., *Proceedings Mathematical Sciences*, **20**, 51, 1945.
- [6] Parimala, M., Jafari, S., Eurasian Bulletin of Mathematics, 1, 85, 2018.
- [7] Pawlak, Z., International Journal of Computer and Information Sciences, 11, 341, 1982.
- [8] Lellis Thivagar, M., Carmel Richard, *International Journal of Mathematics and Statistics Invention*, **1**, 31, 2013.
- [9] Bhuvaneshwari, K., Mythili Gnanapriya, K., International Journal of Scientific and Research Publications, 4, 1, 2014.
- [10] Parimala, M., Jafari, S., Murali, S., *Annales Universitatis Scientiarium Budapestinensis*, *Sectio Mathematica*, **60**, 3, 2017.
- [11] Lellis Thivagar, M., Kavitha, J., *Missouri Journal of Mathematical Sciences*, **29**, 80, 2017.