ORIGINAL PAPER

MULTIPLE SOLUTIONS FOR A LERAY-LIONS FOURTH-ORDER PROBLEM

KHALED KEFI¹, NAWAL IRZI²

Manuscript received: 03.01.2025; Accepted paper: 28.05.2025; Published online: 30.06.2025.

Abstract. This work considers a Leray-Lions problem in nonstandard Sobolev spaces. We assume some assertions about the functions k and f to establish the existence and multiplicity of solutions for the problem

$$\begin{cases} \Delta(k(x, \Delta w)) + b(x)|w|^{p(x)-2}w = \lambda f(x, w), & \text{in } Q\\ w = \Delta w = 0, & \text{on } \partial Q \end{cases}$$

Keywords: Leray-Lions type operators; generalized Sobolev space; Fourth-order PDE.

Mathematics Subject Classification (2020): 35J20, 35J60, 35G30, 35J35, 46E35.

1. INTRODUCTION

In recent years, there has been a lot of research about variational problems related to non-standard growth conditions. This is a consequence of their appearance in different fields of applied mathematics and physics. Readers can refer to the works [1-4] to fully understand the interest in this kind of problem. The fourth-order operator with nonstandard growth, $\Delta_{p(x)}^2 w := \Delta(|\Delta w|^{p(x)-2} \Delta w)$, where p is a continuous function depending on the variable space is an extension of the classical p-biharmonic operator $\Delta_p^2 w := \Delta(|\Delta w|^{p-2} \Delta w)$. However, the use of the p(x)-biharmonic operator is more difficult due to the non-homogeneity. Many authors have investigated this type of problem [5-20].

This manuscript focuses on a class of general operators introduced by Leray and Lions, which we refer to as the Leray-Lions type operators [23]. More precisely, we investigate the weak solvability of the problems using the operator $\Delta(k(x, \Delta w))$ under some additional conditions on the Carathéodory function k.

In this paper Q will be a regular, bounded domain in $\mathbb{R}^N(N \ge 2)$, ∂Q denotes the boundary and $b \in C(\overline{Q})$ where $\inf_{x \in Q} b(x) > 0$. We study the solvability and the multiplicity of solutions for the problem

$$\begin{cases} \Delta(k(x,\Delta w)) + b(x)|w|^{p(x)-2}w = \lambda f(x,w), & \text{in } Q\\ w = \Delta w = 0, & \text{on } \partial Q \end{cases} \#$$
(1.1)

² University of Bejaia, Faculty of Exact Sciences, Department of Mathematics, 06000 Bejaia, Algeria. E-mail: nawal.irzi@univ-bejaia.dz.

¹ Northern Border University, Center for Scientific Research and Entrepreneurship, 73213 Arar, Saudi Arabia. E-mail: khaled_kefi@yahoo.fr.

where $\lambda > 0, k, f$ are functions with some suitable conditions introduced later, and the continuous function p is log-Hölder satisfying

$$|p(x) - p(y)| \le \frac{c}{-\log|x - y|} \quad \forall x, y \in Q, 0 < |x - y| \le \frac{1}{2},$$

where c is a positive constant.

In the sequel, let us recall some studies related to the general operator in divergence form. In that context, Afrouzi et al. [22] studied the problem

$$\begin{cases} -\operatorname{div}(k(x, \Delta w)) = \lambda g(x)f(w), & \text{in } Q \\ w = 0, & \text{on } \partial Q \end{cases}$$

g and f are two continuous functions. Using a critical point theorem, the authors proved that their problems have at least two distinct nonnegative weak solutions in $W_0^{1,p}(Q)$ for any $\lambda \in]0, \lambda^*[$.

Moreover, Yücedağ [20] treated the following problem and established a result of existence and multiplicity.

$$\begin{cases} -\operatorname{div}(k(x,\Delta w)) = f(x,w), & \text{in } Q\\ w = 0, & \text{on } \partial Q \end{cases}$$

In fact, by the Mountain Pass theorem and the Fountain theorem, the author established the existence and multiplicity of a solution in $W_0^{1,p(x)}(Q)$, with p is a continuous function. Furthermore, in [10], the authors proved that there are at least two nontrivial solutions for problem (1.1) for every $\lambda > \lambda_0$, under some hypotheses on the carathéodory function f.

Motivated by the above papers, we deal with problem (1.1) in different cases, and the function k is assumed to verify the same conditions as the paper [6].

 $(\mathbf{H}_1) \ k : \overline{\mathcal{Q}} \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function verifying k(x,0) = 0, for a.e. $x \in \mathcal{Q}$. (\mathbf{H}_2) There exist $c_1 > 0$ and a nonnegative function $d \in L^{\frac{p(x)}{p(x)-1}}(\mathcal{Q})$, such that for any $t \in \mathbb{R}$, one has

$$|k(x,t)| \le c_1 (d(x) + |t|^{p(x)-1}), \text{ for a.e. } x \in Q$$

 (\mathbf{H}_3) For any $s, t \in \mathbb{R}$, we have

$$(k(x,t)-k(x,s))(t-s) \ge 0$$
, for a.e. $x \in Q$

 (\mathbf{H}_4) There exist $c_2 \ge 1$ with

$$c_2|t|^{p(x)} \le k(x,t)t \le p(x)K(x,t)$$
, for a.e. $x \in Q$, and all $s, t \in \mathbb{R}$,

where $K: \overline{Q} \times \mathbb{R} \to \mathbb{R}$ is defined as

$$K(x,t) = \int_0^t k(x,s)ds$$

 (\mathbf{H}_5) The mapping K is p(x)-uniformly convex and there exists a constant $k_0 > 0$ such that

$$K\left(x, \frac{\xi + \psi}{2}\right) \leq \frac{1}{2}K(x, \xi) + \frac{1}{2}K(x, \psi) - k_0|\xi - \psi|^{p(x)}, \quad \text{for all } x \in \mathcal{Q} \text{ and } \xi, \psi \in \mathbb{R}^N$$

 $(\mathbf{H}_5) K(x, -\zeta) = K(x, \zeta), \text{ for all } x \in \mathcal{Q} \text{ and } \zeta \in \mathbb{R}^N.$

Our results are summarized as follows:

Theorem 1.1. Suppose that the conditions $(\mathbf{H}_1) - (\mathbf{H}_5)$ hold, moreover suppose that: $(\mathbf{f}_0)f: \mathcal{Q} \times \mathbb{R} \to \mathbb{R}$ such that $f(x,0) \neq 0$ and

$$|f(x,s)| \le a(x) + \alpha |s|^{\sigma(x)-1}, \quad (x,s) \in \mathcal{Q} \times \mathbb{R}$$

with $a(x) \ge 0$, $a \in L^{\frac{q(x)}{q(x)-1}}(Q)$, $\alpha \ge 0$, $q \in C_+(\overline{Q})$, $\sigma(x) < p_2^*(x)$ and $1 \le \sigma < p^-$. Then problem (1.1) has at least one solution (in the weak sense).

Theorem 1.2. Suppose that the conditions (\mathbf{H}_1) - (\mathbf{H}_5) hold, $f: \mathcal{Q} \times \mathbb{R} \to \mathbb{R}$ satisfy $(\mathbf{f}_1) |f(x,t)| \le a(x) + \alpha |t|^{q(x)-1}$ for all $x \in \mathcal{Q}$, whith $a \in L^{\frac{q(x)}{q(x)-1}}(\mathcal{Q}), \alpha \ge 0$ and $p(x) < q(x) < p_2^*(x)$.

(\mathbf{f}_2) Suppose that there is a function $\theta(x) > p(x)$ and a positive constant M > 0 satisfying the following inequality

$$0 < \theta(x)F(x,t) \le tf(x,t)$$
, for each $t \in \mathbb{R}$ and $|t| \ge M$

So, one has a $\lambda^* > 0$ such that for any $\lambda \in]0, \lambda^*[$, problem (1.1) has at least two distinct weak solutions.

Theorem 1.3. Assume that the conditions $(\mathbf{H}_1) - (\mathbf{H}_5)$ hold and that f satisfies (\mathbf{f}_2) and (\mathbf{f}_1') $\lim_{t\to 0} \frac{f(x,t)}{a(x)|t|^{p+1}} = 0$, for $x \in \mathcal{Q}$ uniformly, where $a \in L^{\frac{p(x)}{p(x)-1}}(\mathcal{Q})$.

 (\mathbf{f}_2') $\lim_{t\to\infty} \frac{f(x,t)}{|t|^{q(x)-1}} = 0$, for $x\in\mathcal{Q}$ uniformly. If $q^->p^+$, problem (1.1) admits a nontrivial weak solution.

Theorem 1.4. Assume that conditions (\mathbf{H}_4) , (\mathbf{H}_5) , (\mathbf{f}_2) are satisfied and $q^- > p^+$. Moreover, assume

that

$$(\mathbf{f}_3) f(x, -t) = -f(x, t), \quad \text{for } (x, t) \in \mathcal{Q} \times \mathbb{R}.$$

Then, problem (1.1) admits infinite pairs of solutions. Finally, by using the critical point theory in the calculus of variations, a result of existence and multiplicity is developed, and precisely for the case when (p() - 1.) - sublinear at in finity.

Theorem 1.5. Assume that conditions (\mathbf{H}_1) to (\mathbf{H}_4) are satisfied. Also, assume the following (\mathbf{f}_4) $f \in L^{\infty}(Q \times [-t_1, t_1])$, for any $t_1 \in \mathbb{R}_+$.

- ($\mathbf{f_5}$) $\lim_{|t| \to \infty} \frac{f(x,t)}{|t|^{p^--1}} = 0$, uniformly for $x \in Q$.
- ($\mathbf{f_6}$) There exists a constant $t_0 > 0$ and a ball B such that $\bar{B} \subset \mathcal{Q}$ and $0 < \int_B F(x, t_0) dx$.

Then there is $\lambda_* > 0$ such that problem (1.1) admits at least one nontrivial weak solution for any $\lambda > \lambda_*$. In addition, if (\mathbf{f}_7) $\lim_{|t| \to 0} \frac{f(x,t)}{|t|^{p^+-1}} = 0$, uniformly for $x \in \mathcal{Q}$, with $p^+ < p_2^*(x)$, for all $x \in \overline{\mathcal{Q}}$.

The problem (1.1) has at least two nontrivial weak solutions for every $\lambda > \lambda_*$.

2. PRELIMINARIES

In what follows, we recall some properties and definitions of variable-exponent Sobolev spaces. The reader can refer to the works in [23-26] for more understanding.

Let

$$C_{+}(\overline{Q}):=\{r:r\in C(\overline{Q}),r(x)>1, \text{ for all } x\in \overline{Q}\}$$

Let $p \in C_+(\overline{Q})$, with

$$1 < p^{-} := \min_{x \in \overline{Q}} p(x) \le p(x) \le p^{+} := \max_{x \in \overline{Q}} p(x) < +\infty.$$
 (2.1)

We define the Lebesgue space with non-standard exponents as

$$L^{p(x)}(Q) = \{ w : w : Q \to \mathbb{R} \text{ , measurable } : \int_{Q} |w(x)|^{p(x)} dx < \infty \}.$$

We equip this space with the Luxembourg norm

$$|w|_{p(x)} = \inf\left\{\tau > 0: \int_{\mathcal{Q}} \left| \frac{w(x)}{\tau} \right|^{p(x)} dx \le 1\right\}$$

Note that the Lebesgue spaces with variable exponent are Banach spaces and reflexive if and only if $1 < q^- \le q^+ < \infty$. Besides, if q_1, q_2 verify $q_1(x) \le q_2(x)$ a.e. $x \in \mathcal{Q}$, then the injection

$$L^{q_2(x)}(\mathcal{Q}) \hookrightarrow L^{q_1(x)}(\mathcal{Q})$$

is compact and continuous.

Besides, for $w \in L^{p(x)}(Q)$ and $w_0 \in L^{p'(x)}(Q)$, one has

$$\left| \int_{Q} w w_0 dx \right| \le \left(\frac{1}{p^-} + \frac{1}{p'^-} \right) |w|_{p(x)} |w_0|_{p'(x)}, \tag{2.2}$$

where p'(x) is the conjugate function of p(x).

Next, we define on the space $L^{p(x)}(Q)$ the so-called modular which is the function $\rho_{p(x)}: L^{p(x)}(Q) \to \mathbb{R}$ defined as follows

$$\rho_{p(x)}(w) := \int_{\mathcal{Q}} |w|^{p(x)} dx$$

and satisfying some interesting properties needed later.

Proposition 2.1. ([24]) For all $w \in L^{p(x)}(Q)$, one has

- 1. $|w|_{p(x)} < 1$ (resp. = 1, > 1) $\Leftrightarrow \rho_{p(x)}(w) < 1$ (resp. = 1, > 1).
- 2. If $|w|_{p(x)} > 1$, then we have

$$|w|_{p(x)}^{p^{-}} \le \rho_{p(x)}(w) \le |w|_{p(x)}^{p^{+}}$$

3. If $|w|_{p(x)} < 1$, then we have

$$|w|_{p(x)}^{p^+} \le \rho_{p(x)}(w) \le |w|_{p(x)}^{p^-}$$

For any positive integer m, we define the Sobolev space with variable exponents as:

$$W^{m,p(x)}(\mathcal{Q}) = \big\{ w \in L^{p(x)}(\mathcal{Q}), D^{\alpha}w \in L^{p(x)}(\mathcal{Q}); |\alpha| \le m \big\},$$

where $\alpha = (\alpha_1, \alpha_2, ..., \alpha_N)$ is a multi-index, $|\alpha| = \sum_{i=1}^N \alpha_i$ and $D^{\alpha}w = \frac{\partial^{|\alpha|}w}{\partial^{\alpha_1}x_1...\partial^{\alpha_N}x_N}$. So $W^{m,p(x)}(Q)$ is a separable and reflexive Banach space equipped with the norm

$$||w||_{m,p(x)} = \sum_{|\alpha| \le m} |D^{\alpha}w|_{p(x)}$$

The space $W_0^{m,p(x)}(Q)$ is the closure of $C_0^{\infty}(Q)$ in $W^{m,p(x)}(Q)$. Now since $W^{2,p(x)}(Q)$ and $W_0^{1,p(x)}(Q)$ are reflexive, separable Banach spaces, then $X = W^{2,p(x)}(Q) \cap W_0^{1,p(x)}(Q)$, satisfy the same characteristic, equipped with the norm

$$||w||_X = ||w||_{W^{2,p(x)}(Q)} + ||w||_{W_0^{1,p(x)}(Q)}$$

we also mention due to the fact (b) $b \in L^{\infty}(Q)$ and there exists $b_0 > 0$ such that $b(x) \ge b_0$ for a.e. $x \in Q$, then

$$\|w\|_b = \inf\left\{\mu > 0: \int_O \left(\left|\frac{\Delta w}{\mu}\right|^{p(x)} + b(x)\left|\frac{w}{\mu}\right|^{p(x)}\right) dx \le 1\right\}$$

is an equivalent norm to $\|\cdot\|_X$ on X, (see Remark 2.1 in [14]). So, in the rest of the paper, we will consider $(X, \|\cdot\|_b)$. We also define on X the function $\rho_{p(x)}: X \to \mathbb{R}$ which is called modular and defined by

$$\rho_{p(x)}^b(w) := \int_{\mathcal{Q}} \left(|\Delta w|^{p(x)} + b(x)|w|^{p(x)} \right) dx.$$

and one has (see [13]).

Lemma 2.1. For $w, w_n \in X$ we have

- 1. $||w||_b < 1$ (resp. = 1, > 1) $\Leftrightarrow \rho_{p(x)}^b(w) < 1$ (resp. = 1, > 1).
- 2. $\min\left(\|w\|_b^{p^-}, \|w\|_b^{p^+}\right) \le \rho_{p(x)}^b(w) \le \max\left(\|w\|_b^{p^-}, \|w\|_b^{p^+}\right)$.
- 3. $||w_n||_b \to 0$ (resp. $\to \infty$) $\Leftrightarrow \rho_{n(x)}^b(w_n) \to 0$ (resp. $\to \infty$).

In what follows, we remind the definition of the critical Sobolev exponent:

$$p_2^*(x) = \begin{cases} \frac{Np(x)}{N - 2p(x)}, & p(x) < \frac{N}{2} \\ +\infty, & p(x) \ge \frac{N}{2} \end{cases}$$

Theorem 2.1. (See Theorem 3.2 in [5]) Let $p \in C_+(\overline{Q})$ verifying

$$p(x) < \frac{N}{2}$$
, for all $x \in \overline{Q}$. (2.3)

Let $s: \overline{\mathcal{Q}} \to (1, \infty)$ be a continuous function such that

$$p_2^*(x) = \frac{Np(x)}{N - 2p(x)} > s(x) \ge s^- > 1, x \in \overline{Q}.$$
 (2.4)

If (2.3) and (2.4) hold, there exists a constant C = C(N, q, r, Q) such that

$$|g|_{S(x)} \le C||g||_b$$
, for all $g \in X$

So, for any $s \in (1, p^*)$, the injection $X \hookrightarrow L^{s(x)}(Q)$ is compact and continuous. Proposition 2.2. (See [12]) Let p be a measurable function in $L^{\infty}(Q)$ and q be a measurable function such that $1 \le p(x)q(x) \le \infty$, for a.e. $x \in Q$. If w is a nontrivial function in $L^{q(x)}(Q)$, then

$$\min\left(|w|_{p(x)q(x)}^{p^{+}},|w|_{p(x)q(x)}^{p^{-}}\right) \leq \left||w|^{p(x)}\right|_{q(x)} \leq \max\left(|w|_{p(x)q(x)}^{p^{+}},|w|_{p(x)q(x)}^{p^{-}}\right)$$

In the following, we shall designate by $c, c_i, i = 1, 2, ...$, a positive constant that may vary from line to line.

3 PREREQUISITE RESULTS

Definition 3.1. $w \in X \setminus \{0\}$ is a weak solution of (1.1) if $\Delta w = 0$ on ∂Q and

$$\int_{Q} \left(k(x, \Delta w) \Delta v + b(x) |w|^{p(x)-2} wv \right) dx - \lambda \int_{Q} f(x, w) v dx = 0, \quad \forall v \in X$$

First, let us denote by

$$J(w) = \int_{\mathcal{Q}} \left(K(x, \Delta w) + \frac{b(x)}{p(x)} |w|^{p(x)} \right) dx \text{ and } \phi(w) = \int_{\mathcal{Q}} F(x, w) dx$$

with $F(x,t) = \int_0^t f(x,s) ds$. The energy of problem (1.1) is defined by $\Psi_{\lambda}: X \to \mathbb{R}$, where

$$\Psi_{\lambda}(w) = I(w) - \lambda \phi(w), \forall w \in X.$$

In what follows, we recall an important result.

Theorem 3.1. (See [8]) The energy functional $J: X \to \mathbb{R}$ is sequentially weakly lower semi-continuous and of class C^1 . Moreover, the mapping $J': X \to X^*$ is a strictly monotone bounded homeomorphism and is of type (S_+) , that is,

if
$$w_n \to w$$
 and $\limsup_{n \to \infty} J'(w_n)(w_n - w) \le 0$, then $w_n \to w \in X$

Due to Theorem 3.1, we see that $J \in C^1(X, \mathbb{R})$. Besides, under assertions (\mathbf{H}_1) and Proposition 2 in [7], one has $\phi \in C^1(X, \mathbb{R})$. Thus, $\Psi_{\lambda} \in C^1(X, \mathbb{R})$, moreover

$$< d\Psi_{\lambda}(w), v> = \int_{\mathcal{Q}} \left(k(x, \Delta w) \Delta v + b(x) |w|^{p(x)-2} wv \right) dx - \lambda \int_{\mathcal{Q}} f(x, w) v dx$$

for every $w, v \in X$. Therefore, the critical points of Ψ_{λ} are exactly the weak solutions of the problem (1.1).

Theorem 3.2. (Critical point theorem,[3]) Let X be a real Banach space and let $J, \phi: X \to \mathbb{R}$ be two continuously Gâteaux differentiable functions such that J is bounded from below and $J(0) = \phi(0) = 0$. Fix r > 0 such that $\sup_{J(w) < r} \phi(w) < +\infty$ and assume that, for each $\lambda \in]0, \frac{r}{\sup_{J(w) < r} \phi(w)}[$, the functional $\Psi_{\lambda} := J - \lambda \phi$ satisfies (PS)-condition and it is unbounded from below. Then, for each $\lambda \in]0, \frac{r}{\sup_{J(w) < r} \phi(w)}[$, the functional Ψ_{λ} admits two distinct critical points.

Theorem 3.3. (Mountain-pass theorem) Let X be a Banach space and let $\Psi_{\lambda} \in C^1(\mathcal{Q}, \mathbb{R})$ which fulfills the Palais-Smale condition. Suppose that $\Psi_{\lambda}(0) = 0$ and

- 1. There exist two positive real numbers η and r such that $\Psi_{\lambda}(w) \ge r$ with $||w|| = \eta$,
- 2. There exists $w_1 \in X$ such that $||w_1|| > \rho$ and $\Psi_{\lambda}(w_1) < 0$.

Let

$$\Gamma = \{g \in C([0,1], X) \colon g(0) = 0, g(1) = w_1\}$$

and

$$\beta = \inf\{\max \Psi_{\lambda}(g([0,1])) : g \in \Gamma\}$$

Then $\beta \ge r$ and β is a critical value of Ψ_{λ} . Now, let X be a reflexive and separable Banach space, then there are $\{e_i\} \in X$ and $\{e_i^*\} \in X^*$ such that

$$X = \overline{\text{span}\{e_j \mid j = 1,2,3...\}}, \quad X^* = \overline{\text{span}\{e_j^*, j = 1,2,3...\}}$$

and

$$< e_i^*, e_j > = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

For convenience, we write $X_j = \operatorname{span}\{e_j\}$, $Y_k = \bigoplus_{j=1}^k X_j$, $Z_k = \bigoplus_{j=k}^{+\infty} X_j$. So we have Theorem 3.4. (See Lemma 4.9 [18]) If $q(x) \in C_+(\overline{Q})$, $q(x) < p_2^*(x)$ for any $x \in \overline{Q}$, denote

$$\beta_k = \sup\{|w|_{q(x)}: ||w|| = 1, w \in Z_k\}.$$

Then $\lim_{k\to\infty}\beta_k=0$.

Theorem 3.5. (Fountain theorem [3]) Assume that X is a Banach space, $\Psi_{\lambda} \in C^1(X, \mathbb{R})$ is an even function and X_k, Y_k and Z_k are defined as above. If there exists $\rho_k > \gamma_k > 0$ for each k = 1, 2, ... such that:

- 1. $\inf_{w \in Z_k, ||w|| = \gamma_k} \Psi_{\lambda}(w) \to \infty \text{ as } k \to \infty,$
- 2. $\max_{w \in Y_k, ||w|| = \rho_k} \Psi_{\lambda}(w) \le 0$,
- 3. Ψ_{λ} fulfill the condition (PS) for any c > 0, then Ψ_{λ} admits a sequence of critical values tending to $+\infty$.

4. PROOF OF THEOREMS

Proof of Theorem 1.1. Since $|f(x,s)| \le a(x) + \alpha |s|^{\sigma(x)-1}$ then

$$|F(x,s)| \le a(x)|s| + \frac{\alpha}{\sigma(x)}|s|^{\sigma(x)} \le \beta(x) + c_1|s|^{\sigma(x)}$$

where $\beta \ge 0$ and $\beta \in L^1(Q)$, it follows

$$\Psi_{\lambda}(w) = \int_{Q} \left(\Delta(k(x, \Delta w)) + \frac{b(x)}{p(x)} |w|^{p(x)} \right) dx - \lambda \int_{Q} F(x, w) dx$$

Using the fact that $\Delta(k(x, \Delta w)) \ge c|\Delta w|^{p(x)}$, one has for $||w||_b > 1$ and since $X \hookrightarrow L^{\sigma(x)}(Q)$

$$\Psi_{\lambda}(w) \ge \frac{c}{p^{+}} \|w\|_{b}^{p^{-}} - |\beta|_{L^{1}} - c_{1} \|w\|_{b}^{\sigma(x)}$$

So $\Psi_{\lambda} \to +\infty$ as $||w||_b \to +\infty$. Since Ψ_{λ} is weakly lower semi-continuous, then Ψ_{λ} admits a minimum point $w \in X$, so w is a weak solution of problem (1.1). The fact that $f(x,0) \neq 0$, ends the proof.

Proof of Theorem 1.2. Our objective is to apply Theorem 3.2 to problem (1.1). First, we show that Ψ_{λ} fulfill (PS)-condition for any $\lambda > 0$. For that, we will prove that any sequence $\{w_n\} \subset X$ such that

$$|\Psi_{\lambda}(w_n)| \le c$$
, and $\Psi'_{\lambda}(w_n) \to 0$, as $n \to \infty \#$ (4.1)

has a convergent subsequence. We assume that $||w_n||_b > 1$, by using (H_4) and (f_1) we can write

$$\begin{aligned} c + \|w_{n}\|_{b} &\geq \Psi_{\lambda}(w_{n}) - \frac{1}{\theta} < \Psi_{\lambda}'(w_{n}), w_{n} > \\ &= \int_{Q} \left(K(x, \Delta w_{n}) + \frac{b(x)}{p(x)} |w_{n}|^{p(x)} \right) dx - \lambda \int_{Q} F(x, w_{n}) dx \\ &- \frac{1}{\theta} \left(\int_{Q} \left(k(x, \Delta w_{n}) \Delta w_{n} + b(x) |w_{n}|^{p(x)} \right) dx - \lambda \int_{Q} f(x, w_{n}) w_{n} dx \right) \\ &\geq \int_{Q} \left(c_{2} \frac{|\Delta w_{n}|^{p(x)}}{p(x)} + \frac{b(x)}{p(x)} |w_{n}|^{p(x)} \right) dx - \lambda \int_{Q} F(x, w_{n}) dx \\ &- \frac{1}{\theta} \left(\int_{Q} \left(c_{2} |\Delta w_{n}|^{p(x)} + b(x) |w_{n}|^{p(x)} \right) dx - \lambda \int_{Q} f(x, w_{n}) w_{n} dx \right) \\ &\geq c_{2} \left(\frac{1}{p^{+}} - \frac{1}{\theta} \right) \int_{Q} \left(|\Delta w_{n}|^{p(x)} + b(x) |w_{n}|^{p(x)} \right) dx \\ &+ \lambda \left(\int_{Q} \left(\frac{1}{\theta} f(x, w_{n}) w_{n} - F(x, w_{n}) \right) dx \\ &\geq c_{2} \left(\frac{1}{p^{+}} - \frac{1}{\theta} \right) ||w_{n}||_{b}^{p^{-}}. \end{aligned}$$

Since $p^- > 1$, we obtain a contradiction. So $\{w_n\}$ is bounded in X. Thus, up to a subsequence $w_n \to w$ in X and due to the compact embedding $X \to L^{q(x)}(Q)$, we have

$$w_n \to w \text{ in } L^{q(x)}(Q) \# \tag{4.2}$$

From (4.1), we have

$$<\Psi'_{\lambda}(w_n), w_n-w>\to 0$$

so,

$$<\Psi'_{\lambda}(w_n), w_n - w> = \int_{\mathcal{Q}} \left(k(x, \Delta w_n) (\Delta w_n - \Delta w) + b(x) |w_n|^{p(x)} (w_n - w) \right) dx - \lambda \int_{\mathcal{Q}} f(x, w_n) (w_n - w) dx \to 0.$$

By (f_1) , we get

$$\left| \int_{Q} f(x, w_n)(w_n - w) dx \right| \leq |a(x)|_{\frac{q(x)}{q(x) - 1}} |w_n - w|_{q(x)} + \alpha ||w_n|^{q(x) - 1} |_{\frac{q(x)}{q(x) - 1}} |w_n - w|_{q(x)}.$$

By using (4.2), we obtain

$$\int_{\Omega} f(x, w_n)(w_n - w) dx \to 0.$$

Then, we have

$$\int_{\mathcal{O}} \left(k(x, \Delta w_n) (\Delta w_n - \Delta w) + b(x) |w_n|^{p(x)-2} (w_n - w) \right) dx \to 0$$

so,

$$\limsup_{n\to\infty} J'(w_n)(w_n-w) \le 0$$

According to Theorem 3.1, one has $w_n \to w$ in X and so Ψ_{λ} meets (PS)-condition. From (f₂), we have

$$F(x,t) \ge C|t|^{\theta}$$
, for all $|t| \ge M$, a.e. $x \in Q\#$ (4.3)

So, for any fixed $w_0 \in X \setminus \{0\}$, t > 1 and assertion (\mathbf{H}_2) , we have

$$\begin{split} \Psi_{\lambda}(tw_{0}) &= \int_{\mathcal{Q}} \left(K(x, t\Delta w_{0}) + \frac{b(x)}{p(x)} |tw_{0}|^{p(x)} \right) dx - \lambda \int_{\mathcal{Q}} F(x, tw_{0}) dx \\ &\leq 2t^{p^{+}} c_{3} |d|_{p'(.)} |\Delta w_{0}|_{p(.)} + \frac{t^{p^{+}} c_{3}}{p^{-}} \int_{\mathcal{Q}} \left(|\Delta w_{0}|^{p(x)} + b(x) |w_{0}|^{p(x)} \right) dx - \lambda C t^{\theta} \int_{\mathcal{Q}} |w_{0}|^{\theta} dx \\ &\leq 2t^{p^{+}} c_{3} |d|_{p'(.)} |\Delta w_{0}|_{p(.)} + \frac{t^{p^{+}} c_{3}}{p^{-}} ||w_{0}||_{b}^{p^{+}} - \lambda C t^{\theta} \int_{\mathcal{Q}} |w_{0}|^{\theta} dx. \end{split}$$

Since $\theta > p^+$, the functional Ψ_{λ} is unbounded from below. Fix $\lambda \in (0, \lambda^*)$, using condition (H_2) , one has

$$\frac{1}{p^+} \|w\|_b^{p^+} \le \frac{1}{p^+} \rho_{p(x)}^b(w) \le J(w)$$

for every $w \in X$ such that $w \in J^{-1}(]-\infty,1[)$. It follows that

$$||w||_b < (p^+r)^{\frac{1}{p^+}}$$

Moreover, the compact imbedding $X \hookrightarrow L^{q(x)}(Q)$, imply that for all $w \in J^{-1}(]-\infty,1[)$, one has

$$\Phi(w) \le C |a|_{\frac{q(x)}{q(x)-1}} ||w||_b + \frac{\alpha}{q^-} \max \left(C^{q^+} ||w||_b^{q^+}, C^{q^-} ||w||_b^{q^-} \right)$$

$$< C |a|_{\frac{q(x)}{q(x)-1}} (p^+ r)^{\frac{1}{p^+}} + \frac{\alpha}{q^-} \max \left(C^{q^+} (p^+ r)^{\frac{q^+}{p^+}}, C^{q^-} (p^+ r)^{\frac{q^-}{p^+}} \right)$$

choosing r = 1, one has

$$\sup_{J(w)<1} \Phi(w) \le C|a|_{\frac{q(x)}{q(x)-1}} (p^+)^{\frac{1}{p^+}} + \frac{\alpha}{q^-} \max \left(C^{q^+}(p^+)^{\frac{q^+}{p^+}}, C^{q^-}(p^+)^{\frac{q^-}{p^+}} \right) = \frac{1}{\lambda^*} < \frac{1}{\lambda} \#$$
 (4.4)

From (4.4), one has

$$\lambda \in]0, \lambda^*[\subseteq]0, \frac{1}{\sup_{J(w)<1} \Phi(w)}[$$

So all assertions of Theorem (1.2) hold, then for each $\lambda \in]0, \lambda^*[\Psi_{\lambda}]$ admits two distinct critical points which represent the weak solutions of problem (1.1).

Proof of Theorem 1.3. Since $p^+ < q^- < q(x) < p_2^*(x)$ and by Theorem 2.1, the embeddings $X \hookrightarrow L^{p^+}(Q)$ and $X \hookrightarrow L^{q(x)}(Q)$ are continuous, there exist $c_4, c_5 > 0$ with

$$|w|_{q(x)} \le c_4 ||w||_b \quad |w|_{p^+} \le c_5 ||w||_b \quad \text{for all } w \in X. \#$$
 (4.5)

Let $\epsilon > 0$ small enough with $\lambda \frac{c_5^{p^+} \epsilon}{p^+} |a|_{\underline{p^+}} \leq \frac{1}{2p^+-1}$. Using (f'_1) and (f'_2) , we get

$$F(x,t) \le \epsilon \frac{a(x)}{p^+} |t|^{p^+} + \frac{\alpha}{q(x)} |t|^{q(x)} \quad \text{for all } (x,t) \in \mathcal{Q} \times \mathbb{R}^{\#}$$

$$\tag{4.6}$$

Let $\rho \in (0,1)$ and $w \in X$ be such that $||w|| = \rho$. By considering Proposition (2.1) and relations (4.5)-(4.6), we deduce that

$$\begin{split} \Psi_{\lambda}(w) &\geq \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{+}} - \lambda \frac{\epsilon}{p^{+}} \int_{\mathcal{Q}} a(x) |w|^{p^{+}} dx - \lambda \frac{\alpha}{q^{-}} \int_{\mathcal{Q}} \alpha |w|^{q(x)} dx \\ &\geq \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{+}} - \lambda \frac{c_{5}^{p^{+}} \epsilon}{p^{+}} |a|_{\frac{p^{+}}{p^{+}-1}} \|w\|_{b}^{p^{+}} - \lambda \frac{\alpha}{q^{-}} c_{4}^{q^{-}} \|w\|_{b}^{q^{-}} \\ &\geq \frac{c_{2}}{2p^{+}} \|w\|_{b}^{p^{+}} - \lambda c_{6} \|w\|_{b}^{q^{-}} \\ &\geq \left(\frac{c_{2}}{2p^{+}} - \lambda c_{6} \|w\|_{b}^{q^{-}-p^{+}}\right) \|w\|_{b}^{p^{+}}. \end{split}$$

Let $h_{\lambda}(s) = \frac{c_2}{2p^+} - \lambda c_6 s^{q^- - p^+}$, t > 0. It is not difficult to see that $h_{\lambda}(s) > 0$ for all $s \in (0, s_1)$, for $s_1 = \left(\frac{c_2}{2p^+\lambda c_6}\right)^{\frac{1}{q^- - p^+}}$. So, for all $\lambda > 0$ we can choose $\eta, r > 0$ such that

$$\Psi_{\lambda}(w) \ge r > 0$$
, for all $w \in X$ with $||w|| = \eta \in (0,1)$.

In view of (f_2) we have for all $|t| \ge M$

$$F(x,t) \ge C|t|^{\theta}$$
 a.e. $x \in Q\#$ (4.7)

Let $u \in X \setminus \{0\}$ and t > 1. By (4.7) one has

$$\Psi_{\lambda}(tu) = \int_{\mathcal{Q}} \left(K(x, \Delta tu) + \frac{b(x)}{p(x)} |tu|^{p(x)} \right) dx - \lambda \int_{\mathcal{Q}} F(x, tu) dx$$

$$\leq t^{p^{+}} \int_{\mathcal{Q}} \left(K(x, \Delta u) + \frac{b(x)}{p(x)} |u|^{p(x)} \right) dx - \lambda C t^{\theta} \int_{\mathcal{Q}} |u|^{\theta} dx$$

Since $\theta > p^+$, we have $\Psi_{\lambda}(tu) \to -\infty(t \to +\infty)$. So, for t > 1 and large enough, we can choose $u_1 = tu$ such that $||u_1|| > \rho$ and $\Psi_{\lambda}(u_1) < 0$.

5. CONCLUSIONS

Since $\Psi_{\lambda}(0) = 0$ and Ψ_{λ} satisfy the Palais-Smale condition, all conditions of Theorem (3.3) are fulfilled. Consequently, Ψ_{λ} has at least one nontrivial critical point which is a nontrivial weak solution.

In what follows, using the Fountain theorem, we will establish the existence of infinitely many pairs of weak solutions for (1.1).

Proof of Theorem 1.4. According to (\mathbf{H}_5) and (\mathbf{f}_3) , Ψ_{λ} is even and satisfy (PS) condition. We shall prove that if k is large enough, then there exist $\rho_k > \gamma_k > 0$ such that (A) $b_k := \inf\{\Psi_{\lambda}(w): w \in Z_k, \|w\| = \gamma_k\} \to \infty$ as $k \to \infty$, (B) $a_k := \max\{\Psi_{\lambda}(w): w \in Y_k, \|w\| = \rho_k\} \le 0$.

The assertion of Theorem 1.4 can be obtained from Fountain Theorem (see Theorem 3.5).

(A) For any $w \in Z_k$ with $||w|| = \gamma_k > 1$, we have

$$\begin{split} \Psi_{\lambda}(w) &\geq \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{-}} - \lambda \alpha \int_{\mathcal{Q}} \frac{|w|^{q(x)}}{q(x)} dx - \lambda \int_{\mathcal{Q}} a(x) |w| dx \\ &\geq \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{-}} - \frac{\lambda}{q^{-}} \alpha \int_{\mathcal{Q}} |w|^{q(x)} dx - \|A\|_{L^{1}} \\ &\geq \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{-}} - \frac{\lambda}{q^{-}} \alpha \int_{\mathcal{Q}} |w|^{q(x)} dx - c_{7} \end{split}$$

If $|w|_{q(x)} \le 1$ then $\int_{Q} |w|^{q(x)} dx \le |w|_{q(x)}^{q^{-}} \le 1$. So

$$\Psi_{\lambda}(w) \ge \frac{c_2}{p^+} \|w\|_b^{p^-} - (c_8 + c_7) \# (4.8)$$

However, if $|w|_{q(x)} > 1$ then $\int_{Q} |w|^{q(x)} dx \le |w|_{q(x)}^{q^+} \le (\beta_k ||w||_b)^{q^+}$ and

$$\Psi_{\lambda}(w) \ge \frac{c_2}{p^+} \|w\|_b^{p^-} - c_8(\beta_k \|w\|_b)^{q^+} - c_7 \#$$
(4.9)

From (4.8) and (4.9), we deduce that

$$\Psi_{\lambda}(w) \ge \frac{c_2}{p^+} \|w\|_b^{p^-} - c_9(\beta_k \|w\|_b)^{q^+} - c_{10}$$

Choose $\gamma_k = \left(\frac{c_9 q^+}{c_2} \beta_k^{q^+}\right)^{\frac{1}{p^- - q^+}}$. Then $\gamma_k \to \infty$ since $p^- < q^+$ and $\beta_k \to 0$ as $k \to \infty$. Hence, if $w \in Z_k$ and $\|w\|_b = \gamma_k$, we deduce that

$$\Psi_{\lambda}(w) \ge c_2 \left(\frac{1}{p^+} - \frac{1}{q^+}\right) \gamma_k^{p^-} - c_{10} \to 0 \text{ as } k \to \infty$$

which implies (A).

To show (B), let $w \in Y_k$ with $||w||_b > 1$ and from (f₂), we write

$$\Psi_{\lambda}(w) \le \frac{1}{p^{-}} \|w\|_{b}^{p^{+}} - \lambda \int_{Q} F(x, w) dx$$

$$\le \frac{c_{2}}{p^{-}} \|w\|_{b}^{p^{+}} - \lambda C \int_{Q} |w|^{\theta} dx$$

Since $\dim Y_k < \infty$ (which implies all norms are equivalent) and $\theta > p^+$, we get that

$$\Psi_{\lambda}(w) \le \frac{c_2}{p^-} \|w\|_b^{p^+} - \lambda C \|w\|_b^{\theta} \to -\infty \text{ as } \|w\|_b \to \infty$$

Thus, we can choose $\rho_k > \gamma_k > 0$ such that

$$\max_{w \in Y_k, ||w||_h = \rho_k} \Psi_{\lambda}(w) \le 0$$

Apply Theorem 3.5 to $\Psi_{\lambda} \in C^1(X, \mathbb{R})$, so there is a sequence of critical values of Ψ_{λ} converging to $+\infty$. As a consequence, there is a sequence $(\pm w_n)_{n\in\mathbb{N}}$ of critical points for Ψ_{λ} such that $\Psi_{\lambda}(\pm w_n) \to +\infty$ as $n \to \infty$. This ends the proof.

Proof of Theorem 1.5. By using (f_5) , we can write that for each $\epsilon > 0$, there exists $t_2 = t_2(\epsilon) > 0$ verifying

$$|f(x,t)| \le \epsilon |t|^{p^{-1}}$$
, for a.e. $x \in Q$ and any $|t| > t_2$

If we consider this relation and (f_4) , we obtain

$$|f(x,t)| \le C(\epsilon) + \epsilon |t|^{p^{-1}}$$
, for a.e. $x \in Q$ and any $t \in \mathbb{R}$ # (4.10)

where $C(\epsilon) = \underset{x \in Q, |t| \le t_2}{\text{esssup}} |f(x, t)|$. Moreover, one has

$$|F(x,t)| \le C(\epsilon)|t| + \frac{\epsilon}{p^-}|t|^{p^-}$$
, for a.e. $x \in \mathcal{Q}$ and all $t \in \mathbb{R}$.# (4.11)

The continuous embedding $X \hookrightarrow L^{p^-}(Q)$ and $X \hookrightarrow L^1(Q)$ assures, the existence of $C_7, C_8 > 0$ verifying

$$|w|_{p^{-}} \le C_7 ||w||_b$$
, $|w|_{L^1(Q)} \le C_8 ||w||_b$, for all $w \in X$

Then, by (H_4) and relation (4.11), for $w \in X$, we have

$$\Psi_{\lambda}(w) \ge \frac{c_2}{p^+} \|w\|_b^{p^-} - \lambda C(\epsilon) \int_{\mathcal{Q}} |w| dx - \lambda \frac{\epsilon}{p^-} \int_{\mathcal{Q}} |w|^{p^-} dx$$

$$\ge \left(\frac{c_2}{p^+} - \frac{\lambda \epsilon C_7^{p^-}}{p^-}\right) \|w\|_b^{p^-} - \lambda C(\epsilon) C_8 \|w\|.$$

Thus, choosing $\epsilon > 0$ such that $\frac{c_2}{p^+} - \frac{\lambda \epsilon C_7^{p^-}}{p^-} > 0$, since $p^- > 1$ we obtain that Ψ_{λ} is coercive, and since Ψ_{λ} is sequentially weakly lower semicontinuous. Therefore, Ψ_{λ} admits a global minimizer w_1 on X.

In what follows, and in order to end our proof, let us show the existence $w_{\epsilon} \in X$ such that $\Psi_{\lambda}(w_{\epsilon}) < 0$. For any $\epsilon > 0$, put $B_{\epsilon} = \{x \in \mathcal{Q}, \operatorname{dist}(x, B) \leq \epsilon\}$ where B is defined in assertion (f₆). Get $\epsilon > 0$ small enough such that $\overline{B_{\epsilon}} \in \mathcal{Q}$. So there is $w_{\epsilon} \in C_{c}^{1}(\mathcal{Q})$ such that

$$w_{\epsilon}(x) := \begin{cases} t_0, & x \in B, \\ 0, & x \in \mathcal{Q} \setminus B_{\epsilon}, \end{cases}$$

and $0 \le w_{\epsilon}(x) \le t_0$, $\forall x \in \mathcal{Q}$, where t_0 is given in (f_6) . Thus, $w_{\epsilon} \in X$ and for a.e. $x \in \mathcal{Q}$,

$$|F(x, w_{\epsilon})| \le \int_{0}^{w_{\epsilon}(x)} |f(x, s)| ds \le |f|_{L^{\infty}(Q \times [-t_{0}, t_{0}])} w_{\epsilon}(x) \le t_{0} |f|_{L^{\infty}(Q \times [-t_{0}, t_{0}])}$$

Thus, we estimate

$$\begin{split} \Psi_{\lambda}(w_{\epsilon}) &= \int_{\mathcal{Q}} \left(K(x, \Delta w_{\epsilon}) + \frac{b(x)}{p(x)} |w_{\epsilon}|^{p(x)} \right) dx - \lambda \int_{\mathcal{Q}} F(x, w_{\epsilon}) dx \\ &= \int_{\mathcal{Q}} \left(K(x, \Delta w_{\epsilon}) + \frac{b(x)}{p(x)} |w_{\epsilon}|^{p(x)} \right) dx - \lambda \int_{\mathcal{B}} F(x, t_{0}) dx - \lambda \int_{\mathcal{B}_{\epsilon} \setminus \mathcal{B}} F(x, w_{\epsilon}(x)) dx \\ &\leq \int_{\mathcal{Q}} \left(K(x, \Delta w_{\epsilon}) + \frac{b(x)}{p(x)} |w_{\epsilon}|^{p(x)} \right) dx - \lambda \left(\int_{\mathcal{B}} F(x, t_{0}) dx - t_{0} |f|_{L^{\infty}(\mathcal{Q} \times [-t_{0}, t_{0}])} |B_{\epsilon} \setminus \mathcal{B}| \right), \end{split}$$

Let $\epsilon > 0$ small enough to assure

$$t_0|f|_{L^{\infty}(\mathcal{Q}\times[-t_0,t_0])}|B_{\epsilon}\setminus B|\leq \frac{1}{2}\int_B F(x,t_0)dx.$$

SO

$$\Psi_{\lambda}(w_{\epsilon}) \leq \int_{Q} \left(K(x, \Delta w_{\epsilon}) + \frac{b(x)}{p(x)} |w_{\epsilon}|^{p(x)} \right) dx - \frac{\lambda}{2} \int_{B} F(x, t_{0}) dx.$$

Then $\Psi_{\lambda}(w_{\epsilon}) < 0$ for any $\lambda > \lambda_*$, with

$$\lambda_* := \frac{2 \int_{\mathcal{Q}} \left(K(x, \Delta w_{\epsilon}) + \frac{b(x)}{p(x)} |w_{\epsilon}|^{p(x)} \right) dx}{\int_{\mathcal{R}} F(x, t_0) dx}.$$

Therefore, for each $\lambda > \lambda_*$, one has $\Psi_{\lambda}(w_1) < 0 = \Psi_{\lambda}(0)$. So, for each $\lambda > \lambda_*$, w_1 is a weak solution of problem (1.1). Now, suppose that the condition (f_7) is fulfilled. We recall also that the fact that Ψ_{λ} is coercive and Ψ'_{λ} of type (S_+) assures that Ψ_{λ} fulfill the (PS) properties. So Ψ_{λ} has a mountain pass geometry. Now, the fact that $p^+ < p_2^*(x)$ for all $x \in \overline{Q}$, assures the existence of q such that $p^+ < q < p_2^*(x)$ for all $x \in \overline{Q}$. Consequently $X \hookrightarrow L^q \hookrightarrow L^{p^+}$, then there exists $C_{p^+}, C_q > 0$ such that

$$|w|_{p^+} \le C_{p^+} ||w||_b$$
, $|w|_q \le C_q ||w||_b$ for all $w \in X$

From (f_5) and (f_7) we have that for $u = \frac{1}{2\lambda C_{p^+}^{p^+} p^+}$ there exist $\mu_1 > 0$ and $\mu_2 > 0$ verifying

$$|f(x,t)| \le u|t|^{p^{-1}} \le u|t|^{q-1}$$
, for a.e. $x \in Q$ and all $|t| > \mu_1$

and

$$|f(x,t)| \le p^+ u |t|^{p^+ - 1}$$
, for a.e. $x \in Q$ and all $|t| < \mu_2$

these inequalities together with (f_4) assert that

$$|F(x,t)| \le C_9 |t|^q + u|t|^{p^+}$$
, for a.e. $x \in Q$ and all $t \in \mathbb{R}$.

So, for each $w \in X$ with $||w||_b < 1$, one has

$$\Psi_{\lambda}(w) \ge \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{+}} - \lambda u \int_{Q} |w|^{p^{+}} dx - \lambda C_{9} \int_{Q} |w|^{q} dx
\ge \frac{c_{2}}{p^{+}} \|w\|_{b}^{p^{+}} - \lambda u C_{p^{+}}^{p^{+}} \|w\|_{b}^{p^{+}} - \lambda C_{9} C_{q}^{q} \|w\|_{b}^{q}
= \frac{c_{2}}{2p^{+}} \|w\|_{b}^{p^{+}} - \lambda C_{9} C_{q}^{q} \|w\|_{b}^{q}.$$

We choose $0 < r < min \left\{ 1, \|w_1\|, \left(\frac{c_2}{2p^+ \lambda C_9 c_q^q} \right)^{\frac{1}{q-p^+}} \right\}$ and letting $\rho = \frac{c_2}{2p^+} r^{p^+} - \lambda C_9 C_q^q r^q$, we deduce that

$$\Psi_{\lambda}(w) \geq \rho, \forall w \in X \text{ with } ||w||_{h} = r$$

Consequently, w_2 , is a critical point of Ψ_{λ} has the second critical point w_2 , so it will also be a weak solution to (1.1). moreover, one has $\Psi_{\lambda}(w_2) \ge \rho > 0 = \Psi_{\lambda}(0)$, so $w_2 \ne w_1$ and $w_2 \ne 0$.

Acknowledgment: The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through the project number NBU-FFR-2025-1706-08.

REFERENCES

- [1] Antontsev, S. N., Shmarev, S. I., *Nonlinear Analysis: Theory, Methods & Applications*, **60**(3), 515, 2005.
- [2] Aydin, I., Journal of Analysis, **32**, 171, 2024.
- [3] Aydin, I., Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(4), 941, 2024.
- [4] Afrouzi, G. A, Mirzapour, M., Chung, N. T., *Electronic Journal of Differential Equations*, **2015**(158), 1, 2015.

- [5] Al-Shomrani, M. M., Salah, M. B. M., Ghanmi, A., Kefi, K., *Mathematical Notes*, **110**, 830, 2021.
- [6] Ayoujil, A., El Amrouss, A., *Electronic Journal of Differential Equations*, **2011**(24), 1, 2011.
- [7] Ayoujil, A., El Amrouss, A., *Nonlinear Analysis: Theory, Methods and Applications*, **71**(10), 4916, 2009.
- [8] Amirkhanlou, S., Afrouzi, G. A., Mathematic Reports 23(73), 313, 2021.
- [9] Boureanu, M. M., Discrete and Continuous Dynamical Systems S, 12(2), 231, 2019.
- [10] Boureanu, M. M., Radulescu, V., Repovš, D., Computers and Mathematics with Applications, 72(9), 2505, 2016.
- [11] Chen, Y., Levine, S., Rao, M., SIAM Journal on Applied Mathematics, 66(4), 1383, 2006.
- [12] Danet, C. P., Electronic Journal of Qualitative Theory of Differential Equations, **31**, 1, 2014.
- [13] El Amrous, A., Moradi, F., Moussaoui, M., Electronic Journal of Differential Equations, 2009(153), 1, 2009.
- [14] El Amrouss, A. R., Ourraoui, A., Boletim da Sociedade Paranaense de Matematica, **31**(1), 179, 2013.
- [15] Fan, X. L., Zhang, Q. H., Nonlinear Analysis: Theory, Methods & Applications, 52(8), 1843, 2003.
- [16] Fan, X., Zhao, D., Journal of Mathematical Analysis and Applications, 263(2), 424, 2001.
- [17] Hsini, M., Irzi, N., Kefi, K., Applicable Analysis, 100(10), 2188, 2019.
- [18] Ho, K., Sim, I., Science China Mathematics, **60**, 133, 2017.
- [19] Kefi, K., Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113, 1557, 2019.
- [20] Kefi, K., Rädulescu, V., Zeitschrift für Angewandte Mathematik und Physik, **68**, 80, 2017.
- [21] Kefi, K., Irzi, N., Alshomrani, M. M., Repovs, D. D., *Bulletin of Mathematical Sciences*, **12**(2), 2022.
- [22] Kong, L., Applied Mathematics Letters, 27, 21, 2014.
- [23] J. Leray, Lions, J. L., Bulletin de la Société Mathématique de France, 93, 97, 1965.
- [24] Papageorgiou, N. S., Rădulescu, V. D., Repovs, D. D., *Nonlinear Analysis Theory and Methods*, 1st Edition, Springer Monographs in Mathematics, Springer, Cham, 2019.
- [25] Ruzička, M., Electrorheological Fluids, Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2000.
- [26] Radulescu, V. D., Nonlinear Analysis: Theory, Methods and Applications, 121, 336, 2015.
- [27] Radulescu, V. D., Repovs, D. D., Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, New York, 2015.
- [28] Yücedağ, Z., Advances in Nonlinear Analysis, 4(4), 285, 2015.
- [29] Zhikov, V. V., Comptes Rendus de l'Académie des Sciences, 316(5), 435, 1993.