

IMPROVING THE CLASSICAL CONVERGENCE TO EULER-MASCHERONI SEQUENCE BY MODIFYING THE MIDDLE TERM

CRISTINEL MORTICI^{1,2,3}

Manuscript received: 14.04.2025; Accepted paper: 21.11.2025;

Published online: 30.12.2025.

Abstract. The aim of this paper is to introduce a new sequence that converges to Euler-Mascheroni constant. Some inequalities and asymptotic formulas are provided. Finally, some numerical comparisons are given.

Keywords: Euler-Mascheroni constant; inequalities; asymptotic series.

Mathematics Subject Classification: 26D15; 40A05; 41A60

1. INTRODUCTION

The Euler-Mascheroni constant γ is defined as the limit of the sequence

$$\gamma_n = h_n - \ln n,$$

where

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$$

is the harmonic sum. Numerically, we have: $\gamma = 0.5772156649 \dots$.

This is an intriguing constant in mathematics. In contrast to other classical constants such as e , or π , it is not even known whether it is rational or not. It seems that the reason why a proof of this fact has not yet been discovered is that no sequences sufficiently rapidly converging to the constant γ have been found.

Consequently, in the recent past, many authors were preoccupied in finding new, fast convergencies to γ .

Drinceanu and Mortici [1] have introduced the sequence

$$\sum_{k=1}^n \left(\frac{1}{k + \frac{1}{2}} - \ln \frac{k}{k + 1} \right).$$

Mortici [2] modified the last terms of γ_n to introduce the sequences:

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} + \frac{1}{(6-2\sqrt{6})n} - \ln \left(n + \frac{1}{\sqrt{6}} \right)$$

and

¹ National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania.

² Valahia University of Targoviste, Faculty of Sciences and Arts, Department of Sciences and Advanced Technologies, 130004 Targoviste, Romania.

³ Academy of Romanian Scientists, 050044 Bucharest, Romania. Email: cristinel.mortici@hotmail.com.

$$v_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} + \frac{1}{(6+2\sqrt{6})n} - \ln\left(n - \frac{1}{\sqrt{6}}\right).$$

Both sequences u_n and v_n were shown to converge to γ as n^{-2} . Other results were published in [3-16].

We use here the idea from [2] to define and discuss the sequence:

$$\rho_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n-1} + \frac{1}{n + \frac{1}{96}} + \frac{1}{n+1} + \cdots + \frac{1}{2n} - \ln\left(2n + \frac{1}{2}\right).$$

The sequence ρ_n is obtained by modifying the middle term $1/n$ in the classical sequence λ_{2n} to $1/(n + 1/96)$ and the logarithm term $\ln 2n$ to $\ln(2n + 1/2)$.

2. A FAMILY OF CONVERGENCIES TO EULER-MASCHERONI CONSTANT

We introduce the family of sequences

$$x_n = x_n(a, b) := 1 + \frac{1}{2} + \cdots + \frac{1}{n-1} + \frac{1}{n+a} + \frac{1}{n+1} + \cdots + \frac{1}{2n} - \ln(2n + b),$$

where a, b are real parameters. Remark that $x_n(0, 0) = \gamma_{2n}$.

We are interested in finding the values of the parameters a, b such that the sequence x_n goes to γ with the fastest speed of convergence.

An important tool for measuring the speed of convergence of a sequence is the following consequence of the Stolz-Cesaro lemma:

Lemma 1. Let x_n be a sequence convergent to zero such that

$$\lim_{n \rightarrow \infty} n^k (x_n - x_{n+1}) = l,$$

for some real parameter $k > 1$. Then

$$\lim_{n \rightarrow \infty} n^{k-1} x_n = \frac{l}{k-1}.$$

In particular, if $l \neq 0$, then this Lemma says that if $x_n - x_{n+1}$ converges to zero as n^{-k} , then x_n converges to zero as $n^{-(k-1)}$.

Lemma 1 is of great importance in accelerating some convergencies, or to obtain new approximation formulas. For details and further properties, please see [10].

In our case, we have

$$\begin{aligned} x_n - x_{n+1} &= -\frac{1}{n} - \frac{1}{n+1+a} + \frac{1}{n+1} + \frac{1}{n+a} - \frac{1}{2n+1} - \frac{1}{2n+2} \\ &\quad - \ln\left(2n + \frac{1}{2}\right) + \ln\left(2n + 2 + \frac{1}{2}\right). \end{aligned}$$

By using the standard expansion series of the logarithm function, or directly, by using the Maple software for symbolic computations, we deduce that:

$$x_n - x_{n+1} = -\frac{2b-1}{4n^2} - \frac{48a-12b-6b^2+7}{24n^3} + \frac{48a-8b+48a^2-6b^2-2b^3+5}{16n^4} + O\left(\frac{1}{n^5}\right).$$

We see that the more of the first terms in this expansion vanish, the better convergence speed of the sequence $x_n - x_{n+1}$ is obtained. The fastest possible sequence is obtained for parameters a, b solution of the system:

$$\begin{cases} 2b-1=0 \\ 48a-12b-6b^2+7=0 \end{cases}$$

that is

$$a = \frac{1}{96}, b = \frac{1}{2}.$$

We can give the following general

Theorem 1. a) If $b \neq 1/2$, then x_n converges to zero as n^{-1} , since

$$\lim_{n \rightarrow \infty} n^2(x_n(a, b) - x_{n+1}(a, b)) = -\frac{2b-1}{4} \text{ and } \lim_{n \rightarrow \infty} nx_n(a, b) = -\frac{2b-1}{4} \neq 0.$$

b) If $b = 1/2$ and $a \neq 1/96$, then $x_n(a, 1/2)$ converges to zero as n^{-2} , since

$$\lim_{n \rightarrow \infty} n^3 \left(x_n \left(a, \frac{1}{2} \right) - x_{n+1} \left(a, \frac{1}{2} \right) \right) = \frac{1}{48} - 2a \text{ and } \lim_{n \rightarrow \infty} n^2 x_n \left(a, \frac{1}{2} \right) = \frac{1}{96} - a \neq 0.$$

c) If $b = 1/2$ and $a = 1/96$, then $x_n(1/96, 1/2)$ converges to zero as n^{-3} , since

$$\lim_{n \rightarrow \infty} n^4 \left(x_n \left(\frac{1}{96}, \frac{1}{2} \right) - x_{n+1} \left(\frac{1}{96}, \frac{1}{2} \right) \right) = -\frac{47}{3072} \text{ and } \lim_{n \rightarrow \infty} n^3 x_n \left(\frac{1}{96}, \frac{1}{2} \right) = -\frac{47}{9216}.$$

3. THE ASYMPTOTIC EXPANSION OF ρ_n

As it is known, the harmonic sequence

$$h_n := 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$

is closely related to the digamma function ψ , i.e., the logarithmic derivative of the Euler-gamma function:

$$\psi(x) = (\ln \Gamma(x))' = \frac{\Gamma'(x)}{\Gamma(x)}, x > 0.$$

We have $\psi(1) = -\gamma$ and

$$h_n = \gamma + \psi(n) + \frac{1}{n}, n \geq 2.$$

The digamma function has the following asymptotic representation, as $x \rightarrow \infty$:

$$\psi(x) \sim \ln x - \frac{1}{2x} - \sum_{j=1}^{\infty} \frac{B_{2j}}{2jx^{2j}} = \ln x - \frac{1}{2x} - \frac{1}{12x^2} + \frac{1}{120x^4} - \frac{1}{252x^6} + \dots . \quad (1)$$

B_k 's are the Bernoulli numbers. For details, see [3].

For the sequence

$$\rho_n = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} + \frac{1}{n + \frac{1}{96}} + \frac{1}{n+1} + \dots + \frac{1}{2n} - \ln \left(2n + \frac{1}{2} \right),$$

we have:

$$\begin{aligned} \rho_n &= h_{2n} + \frac{1}{n + \frac{1}{96}} - \frac{1}{n+1} - \ln \left(2n + \frac{1}{2} \right) \\ &= \gamma + \psi(2n) + \frac{1}{2n} + \frac{1}{n + \frac{1}{96}} - \frac{1}{n+1} - \ln \left(2n + \frac{1}{2} \right). \end{aligned} \quad (2)$$

By taking $x = 2n$ in (1), we get:

$$\begin{aligned} \psi(2n) &\sim \ln 2n - \frac{1}{4n} - \sum_{j=1}^{\infty} \frac{B_{2j}}{2^{2j+1} j n^{2j}} \\ &= \ln 2n - \frac{1}{4n} - \frac{1}{48n^2} + \frac{1}{1920n^4} - \frac{1}{1628n^6} + \dots \end{aligned} \quad (3)$$

By using also the series

$$\ln \left(2n + \frac{1}{2} \right) = \ln 2n + \frac{1}{4n} - \frac{1}{32n^2} + \frac{1}{96n^3} - \frac{1}{128n^4} + \dots$$

and

$$\frac{1}{n+r} = \frac{1}{n} - \frac{r}{n^2} + \frac{r^2}{n^3} - \frac{r^3}{n^4} + \dots, r \in \mathbb{R},$$

we get:

$$\rho_n \sim \gamma + \frac{1}{n^2} - \frac{9263}{9216n^3} + \frac{4430299}{4423680n^4} + \frac{18211}{18432n^5} - \frac{285436179168}{285380444160n^6} + O\left(\frac{1}{n^7}\right).$$

A complete asymptotic series in terms of Bernoulli's numbers can be also given.

4. SOME ESTIMATES FOR ρ_n

We give the following:

Theorem 2. The following inequalities hold true, for every integer $n \geq 1281$:

$$\gamma + \frac{1}{n^2} - \frac{9263}{9216n^3} + \frac{\alpha}{n^4} < \rho_n < \gamma + \frac{1}{n^2} - \frac{9263}{9216n^3} + \frac{\beta}{n^4},$$

where

$$\alpha = 1 \text{ and } \beta = \frac{4430299}{4423680} = 1.0015 \dots$$

(the right-hand side inequality holds true for every integer $n \geq 1$).

Proof. It is well-known that by truncation the asymptotic series (3), under- and upper-approximations are obtained. We use the following:

$$\ln 2n - \frac{1}{4n} - \frac{1}{48n^2} < \psi(2n) < \ln 2n - \frac{1}{4n} - \frac{1}{48n^2} + \frac{1}{1920n^4}.$$

By replacing these estimates in (2), we deduce that

$$\begin{aligned} & \left(\ln 2n - \frac{1}{4n} - \frac{1}{48n^2} \right) + \frac{1}{2n} + \frac{1}{n + \frac{1}{96}} - \frac{1}{n + 1} - \ln \left(2n + \frac{1}{2} \right) < \rho_n - \gamma \\ & < \left(\ln 2n - \frac{1}{4n} - \frac{1}{48n^2} + \frac{1}{1920n^4} \right) + \frac{1}{2n} + \frac{1}{n + \frac{1}{96}} - \frac{1}{n + 1} - \ln \left(2n + \frac{1}{2} \right). \end{aligned}$$

Now it suffices to prove that $u(n) < 0$ and $v(n) > 0$, where:

$$u(n) = \left(\frac{1}{n^2} - \frac{9263}{9216n^3} + \frac{1}{n^4} \right) - \left(\left(\ln 2n - \frac{1}{4n} - \frac{1}{48n^2} \right) + \frac{1}{2n} + \frac{1}{n + \frac{1}{96}} - \frac{1}{n + 1} - \ln \left(2n + \frac{1}{2} \right) \right)$$

and

$$v(n) = \left(\frac{1}{n^2} - \frac{9263}{9216n^3} + \frac{4430299}{4423680n^4} \right) - \left(\left(\ln 2n - \frac{1}{4n} - \frac{1}{48n^2} + \frac{1}{1920n^4} \right) + \frac{1}{2n} + \frac{1}{n + \frac{1}{96}} - \frac{1}{n + 1} - \ln \left(2n + \frac{1}{2} \right) \right)$$

We have:

$$u'(n) = \frac{P(n - 1281)}{3072n^5(4n + 1)(n + 1)^2(96n + 1)^2} > 0$$

and

$$v'(n) = \frac{Q(n)}{221184n^5(4n + 1)(n + 1)^2(96n + 1)^2} < 0,$$

where

$$\begin{aligned} P(n) = & 441856n^5 + 2264749436n^4 + 4353 285594903 n^3 + 3719610 438960439n^2 \\ & + 1192537757 849212232n + 555358623 998399148 \end{aligned}$$

and

$$\begin{aligned} Q(n) = & 174681666n + 9058259079n^2 + 43 672503236n^3 \\ & + 40 776597024n^4 + 885599. \end{aligned}$$

It follows that u is strictly increasing and v is strictly decreasing. Moreover, using

$$\lim_{n \rightarrow \infty} u(n) = \lim_{n \rightarrow \infty} v(n) = 0,$$

we deduce that $u < 0$ and $v > 0$ and the proof is completed.

5. NUMERICAL COMPARISON

We give in this section a numerical table that shows the superiority of our new sequence ρ_n over the sequences u_n and v_n :

n	$\gamma - \rho_n$	$\gamma - u_n$	$v_n - \gamma$
11	3.7306×10^{-6}	1.6013×10^{-5}	1.8096×10^{-5}
100	5.0849×10^{-9}	2.2528×10^{-8}	2.2833×10^{-8}
250	3.2601×10^{-10}	1.4476×10^{-9}	1.4555×10^{-9}
500	4.0775×10^{-11}	1.8120×10^{-10}	1.8169×10^{-10}
10000	5.0997×10^{-15}	2.2679×10^{-14}	2.2682×10^{-14}

We can see that the sequence ρ_n is of one order higher than u_n and v_n .

REFERENCES

- [1] Drinceanu, V., Mortici, C., *J. Sci. Arts*, **25**(1), 25, 2025.
- [2] Mortici, C., *Anal. Appl. (Singap.)*, **8**(1), 99, 2010.
- [3] Abramowitz, M., Stegun, I. A., *Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables*, UNT Libraries Government Documents Department to the UNT Digital Library, a digital repository hosted by the UNT Libraries, New York, 1967.
- [4] Alzer, H., *Expo. Math.*, **24**, 385, 2006.
- [5] Han, X. F., Chen, C. P., *Expo. Math.*, **40**(4), 931, 2022.
- [6] Han, X. F., Chen, C. P., *Bull. Iranian Math. Soc.*, **49**(76), 2023.
- [7] Lu, D., *Appl. Math. Comp.*, **232**(1), 172, 2014.
- [8] Lu, D., Song, L., Yu, Y., *J. Number Th.*, **147**(5), 69, 2015.
- [9] Mortici, C., *Ramanujan J.*, **38**(3), 549, 2015.
- [10] Mortici, C., *The Amer. Math. Monthly*, **117**(5), 434, 2010.
- [11] Mortici, C., *Math. Comp. Modelling*, **51**(9-10), 1154, 2010.
- [12] Mortici, C., *Comp. Appl. Math.*, **29**(3), 479, 2010.
- [13] Mortici, C., *Ramanujan J.*, **26**(2), 185, 2011.
- [14] Mortici, C., *Ramanujan J.*, **25**(2), 149, 2011.
- [15] Mortici, C., *Appl. Anal. Discrete Math.*, **19**(1), 253, 2025.
- [16] Sun, J. L., Chen, C. P., Mortici, C., *J. Sci. Arts*, **68**(3), 479, 2024.