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Abstract. This paper investigates the inextensible flow of timelike curves in three-
dimensional Minkowski space. We first establish the evolution equation of a timelike curve
using a positively oriented orthonormal moving frame, under the condition that the
momentum vector is non-vanishing. Next, we derive the condition for inextensibility and use it
to obtain the evolution equations of the positional adapted frame and its curvatures. Finally,
we present explicit mathematical formulas characterizing the requirements for a timelike
curve to admit an inextensible flow in Minkowski space.
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1. INTRODUCTION

The study of geometric flows has a long history and remains an active area of
research. Flows of curves and surfaces arise naturally in physics, chemistry, and biology,
where they describe diverse nonlinear phenomena. Moreover, this concept is mainly used in
the study of dynamic systems, applied mathematical modelling, vibration analysis. In this
context, an inextensible flow refers to a curve evolution in which the velocity vector’s
magnitude (or equivalently, the arc-length) remains constant. The notion was first introduced
by Sasai (1984) in the framework of modified orthogonal systems and has since found
applications in curve and surface evolution problems, including computer vision and image
processing. There are those in the scientific community who have carried out a variety of in-
depth investigations on this subject as a flow should not expand along its curve if its velocity
vector is inextensible. For example, Latifi examined inextensible flow of curves in
Minkowski 3-space. A partial differential equation including curvature and torsion is used to
explain what is needed and enough for an inextensible curve flow [1]. G6kmen has been the
focus of research about the formulation of the inextensible flow of curves in Euclidean space,
and it provided the necessary criteria for how an inextensible curve can be defined in [2]. Bas
provided the required circumstances for inextensible flows of that type of curve in [3]. Bartels
studied inextensible flow (IF) in order to approximate the elastic flow of inextensible curves,
a numerical scheme is developed, and it is demonstrated that approximations converge to
accurate solutions of the nonlinear time-dependent partial differential equation in [4]. Yildiz,
in [5], investigated inextensible curve flows (IFC) in three-dimensional Lie groups where the
curvatures are involved in a partial differential equation that expressed the necessary and
sufficient circumstances for IFC. In Gaber [6], the motion of curves in three-dimensional
spherical space S° is studied and the evolution equations for curvatures as well as the
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evolution equations of the orthonormal frame are obtained and additionally, determined the
curves from their fundamental equations and provided some clear examples of motions of
inextensible curves in S°.In Kérpinar [7], has examined and present a new method for IF of
timelike curves in a 4-dimensional LP-Sasakian manifold that is conformally symmetric,
quasi-conformally flat, and conformally straight, and employed Fermi-Walker parallellism in
space to calculate some IF in [8]. Then, Korpinar subsequently discovered a Fermi-Walker
derivative in the trajectory of a particle with charge under the influence of a field of
magnetization considering inextensible flows in R3, examined normal spherical indicatrices
(images) in his work [9], explored the typical spherical indicatrices' geometric characteristics.
Moreover, provided some fresh definitions of curvatures using a few partial differential
equations in R3. Yiizbas: categorized and specified lightlike ruled surfaces and described the
inextensible evolution of a lightlike curve on a lightlike tangent developable surface in [10].
Li has used Hamilton's principle to construct governing equations for three-dimensional in
nature of fluid-conveying pipes with various beginning configurations using the Green-
Lagrange strain tensor, extensible theory, and plug-flow [11]. Along a space curve that is the
component of an alternative frame in [12], Savi¢ and Eren showed the evolutions of ruled
surfaces produced by the fundamental normal, the fundamental normal's derivative, and the
Darboux vector fields.

Recent works reveal that knowledge on inextensible flows keeps to expand swiftly,
with more diversified geometric settings and analytical methodologies contributing to the
continued development of the area. Bartels investigated the inextensible flows of normal
magnetic particles in space, obtaining several new results and illustrating their main findings
with appropriate examples [13]. Furthermore, the inextensible flow of a curve on S"2 was
analyzed using a modified orthogonal Saban frame, where the authors first introduced this
frame and established its relations with the classical Frenet frame [14]. Yakut subsequently
characterized the inextensible curve flow on the unit sphere and derived the corresponding
geodesic curvature within this framework. Additionally, inextensible flows of curves in four-
dimensional pseudo Galilean space are expressed by Almaz and Oztekin, and the necessary
and sufficient conditions of these curve flows are given as partial differential equations [15].
Also, the directional derivatives are defined in accordance with the Serret—Frenet frame in G{,
the extended Serret—Frenet relations are expressed by using Frenet formulas. Furthermore, the
bending elastic energy functions are characterized for the same particle according to curve
a(s,t). In addition, in the present work, Gaber focused on studying the evolution of null
Cartan and pseudo null curves using the Bishop frame in Minkowski space R? [16] and
obtained the necessary and sufficient conditions for the null Cartan and pseudo null curves to
be inextensible curves (the arc-length is preserved). In addition, Gaber derived the time
evolution equations of the Bishop frame (TEESBF) for these curves. Eren evaluated a
combined inextensible evolutions of partner-ruled surfaces produced by vector pairs selected
from an evolving space curve's tangent, primary normal, binormal, and Darboux vectorsin
manuscript [17]. For similar studies by the author, please see [18-21]. By means of these
constructed structures, the articulated mechanisms can be created for complex activities, since
a pair of solid links of an arm move out two ruled surfaces simultaneously while twisting or
translating according to a specific rule. In the contemporary literature, inextensible flows have
been examined across a variety of spaces and geometric configurations. By incorporating the
local geometry of the curve, the positional adaptive frame approach used in our work provides
a more intrinsic and precise method for expressing inextensible flow, and it offers a very
different structure from previous works. This approach makes the functions of the tangent,
normal, binormal, and velocity functions easily observable. It also clarifies how derivatives
and curvature—torsion terms participate during the curve’s dynamic evolution. Consequently,
it provides increased precision and adaptability for both numerical simulations and theoretical
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research. For instance, Ozen demonstrated that there was a close relationship between a
moving point particle of constant mass and its trajectory, emphasizing that moving frames
adapted to such trajectories serve as powerful tools in kinematics theory. Based on this
relation, he introduced a new moving frame, called the Positional Adapted Frame, for
trajectories with non-vanishing angular momentum and investigated several fundamental
topics by means of this frame [22].

In this paper, we first recall the general properties of spacelike, timelike, and lightlike
curves, and present the Frenet equations in Minkowski space. We then establish conditions
under which a timelike curve admits an inextensible flow, expressed in terms of the
coefficients of the transition matrix. Finally, we provide a formal definition of inextensible
flow in this setting.

2. PRELIMINARIES

Assume that the real vector space with its typical vector topology is R3. Denote by
E = {e,,e,,e3} usual base of R3. Using it a vector and its coordinates will be defined:
(x,y,2) or x = (x1,%2,%3), ¥ = (¥1,¥2,¥3) for all the article. Operations performed in
Minkowski space are generally defined over the inner product, so the definition of the inner
product is clearly a cornerstone for the mathematical work to be done on this topic. The
Minkowski space is the metric space R3, where the metric tensor (, ) is given by

(x,y) = X191 + X2¥2 — X33

where x,y € R3. The metric tensor (,) is called Lorentzian inner product depending on
certain adequate conditions, vectors in Minkowski space have several types a vector x that is
in Minkowski space is called,

Spacelike if {(x,x) >0orx =0
Timelike if (x,x) <0 1)
Lightlike if (x,x) =0and x # 0

with the Lorentzian inner product, the space R3 [23]. The idea of the vector's norm, or length,
IS necessary in all branches of mathematics that deal with vectors, and it differs according to
the space in which one works. The following is the definition of a vector x vector’s norm in
Minkowski space.

Definition 2.1. For all vector x € R3, Lorentzian norm of x is defined as in the follow for the
nonnegative vector x, [24]

lIxllL = v 1{x, ). )

Assuming that ¢ is the arc-lenght parametrized space curve along an interval, the
method for determining of the curve o when it is arc-lenght parametrized, is as follows:

T_(X

lle'Il”

a!l

"l

N andB=TXN 3)

here, T is referred to as the curve's tangent vector field, N as its normal vector field, and B as
its binormal vector field. These vectors fluctuate with the curve throughout time [25]. In the
event of a timelike curve, all the operations to be carried out will differ since the Frenet
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matrix form to be obtained will differ. Thus, the following is a definition of the timelike
vector set defined as; Consider that Q is the collection of R3’s timelike vectors. The set of
timelike vectors that forms a cone for each x € Q is represented as Q(x) ={y € Q: (x,y) <
0}. This set is non-empty since x € Q(x), consequently, if and only if (x,y) <0, two
timelike vectors, x and y, are in the same timelike cone [23]. On top of that, working with
timelike vectors causes differences in frenet matrix shape as in the below: Proceed to say that
o is a timelike curve in R$ with parameter s and Lorentz inner product. The Frenet equations
of this curve, as determined by the Frenet frame, is expressed below in terms of the curvatures

of the curve,
d /(T 0 k 0\/T
&) 0 o)
B 0 ¢ O B

this matrix is the matrix form of the Frenet-Serret equations and reflects the relationship valid
for a timelike curve [25].

3. EVOLUTION OF TIMELIKE CURVES

A family of curves parametrized by time may be regarded as a curve evolving with
respect to time. Each curve in such a family can be represented by a mapping ¢ (u, t), where
u denotes the space parameter u and the evolution parameter t. With two components in this
definition set, o can be expressed as follows: An evolution equation, a differential equation
that depicts the evolution of o (u, t) over time, is defined by

, do
o =E=f1T+f2N+fsB ()
represents the flows of curve a where the velocity functions by Frenet frame {T, N, B}, are f;,
f2, f5 the curvatures alter the values of the velocity functions and a flow should not expand
along its curve if its velocity vector is inextensible. In other words, the velocity vector's

magnitude (or the distance based on the derivative) must stay constant. A curve evolution of

o(u,t) and its flow?j—‘z in R? or R3 are said to be inextensible if% |Z—Z| = 0 [26].

3.1. POSITIONAL ADAPTED FRAME (9 AF) OF A TIMELIKE CURVE IN R3

The trajectory of the moving particle can be parameterized with ¢ = o(s) for the unit
speed. For a timelike curve ¢ = o (s), the {§,A,F} form an orthonormal moving frame
known as a g timelike, A and F are spacelike vectors. The following describes the
relationship between the positional adapted frame and the Frenet frame in Minkowski 3-

space;
%) 1 0 0 T
<Jl> = <0 cos0 —sin9> (N) (6)
F 0 sinf cos6 B
If o is timelike, A and F are spacelike vectors, then we have insert the reference for
the following equation
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o 1 0 0 T
<</l> = <O cosh@ sinh@) (N) @)

F 0 sinh8 cosh8/ \B
The derivation formulas of the goAF for a timelike curve in Minkowski 3-space are

given below:

5 o 0 hy hy\ /g
o <cﬂ> = <—h1 0 h3> (Jl) (8)

F —h, hs; 0/ \F

where 7, h, and f5 are g AF apparatuses in R3 and are obtained by

h, = k(s)cosh6
h, = K(s)sinhd 9)
hy; =1(s)—0".

Between vectors g and B, the angle is denoted by 8. Then we have the equalities as
the below satisfies, [27],

PXA=F, AXF=—p,FXp=CA, (10)
and
(0, A) = (A, F) =(F, ) =0. (12)

3.2. INEXTENSIBLE FLOWS OF TIMELIKE CURVES WITH POSITIONAL ADAPTED
FRAME

Let o:1 x (0,1] » R3 be one parameter family of timelike curve respect to the arc
length parameter and {g,A,F} be its positional adapted frame. Let u denote the
parametrization variable and the evolution parameter t of the curve ¢. Then the relation
between u and the arc-length parameter of o can be expressed as follows:

s(u) = fou Z—Z| du, (13)

do do do
= |—| = / - = 14
@ 6u| <6u'6u)|' (14)

The operator corresponding to differentiation with respect to s can be represented in
terms of the variable u as:

where

9_109 (15)
Jds woaiu

Equivalently, it can also be written as:
ds = wou. (16)
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With the two components in this definition set, o can be expressed as follows. An
evolution equation, which describes the evolution of ¢ (u, t) over time, is defined by:

d
W'=a—(:=f180+f2fﬂ+f3? (17)

represents flow of curve o where the velocity functions f;, f, fs, within the positional
adapted frame {go, A, F}, are defined, and the curvature functions alter their values.

Theorem 3.1. Let o be timelike curve with the arc-length parameter with its flow defined by
Eq. (17). Then, the flow is inextensible iff

dw af:
Fra __aul = 2w = f;l, (18)
do
where w = |£|.

Proof: Assume that Z—Z is a smooth flow, then we have

do do do |/
= [—| = {(—,— 19
@ 6u‘ ‘(au'au) 19)
Given the squares of all sides, it can be expressed as
do do
2 = (— —), 20
@ ou’ 6u> (20)

If the derivative of both sides of the Eq. (20) is taken with respect to the parameter t,
we obtain the following equation:

aw d ((6& 60))
6t ~ ot \'ou’ ou

= Gt 5a) ) * o (50

_2(60 d 60)
- au’at(au)

_2<6cr d (00))
T T 9u’ou\at)”

(21)

Considering Eq. (21) above, and the evolution equation of the curve o(u,t) in Eq.
(17), the partial derivative ‘2—‘;’ can be calculated as follows:

L2000 i(a_">
2o at T ‘ou’ou\at
<a T (o + FaA 1) (22)
_ of1 of, 0A af
—<a (520 f1—+a—cﬂ+fza—+ f30)>

By dividing both sides of Eq. (22) by w and considering the derivation formulas of the
$AF in Eq. (8), it can be expressed as
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Jw do

T (%.3180“‘32‘4'*‘33?);
where
1 = %+f hiw + f3h,w
1 au 2741 372
) = fihw +%—f hsw
2 1141 au a; 3
t3 = fihy + foh3 +6_1j
that is, it can be written as
ow d2f1
E: _E_fthw_fzﬁzw
Remark 3.2. The flow is inextensible iff
af;
6_51: —fahy = f3hs. (23)

Proof: The flow do-/ou of a curve o(u,t) is said to be inextensible if and only if the arc-
length parameter is preserved, that is,

0 60|
dt |0u
Considering Egs. (13) and (15) together, it can be written as

0 ( t)_juaa)d _juaa)d _0fy B how =0
s = | Grdu=| Gpdu= g, e~ fhe =0.

Theorem 3.3. The time evolution of the gpAF can be structured in matrix form as shown
below:

d d
/ 0 6_];2+f1h1 — f3hs a_f+f1h2 +f2h3\
o (9N _| (of. (2
§<CA> = (a_2+f1h1 - f3h3) 0 4 <dq>’ (24)
F a; F
=5 T fihz + fohy — 0 )
where
0A
<W'?> = . (25)

Proof: Assume that the flow of the curve ¢ is represented by % = (fif + f,A + f3F) then,
we have
% _9 (a_”)_ (26)
ot 0t \0s

Since the curve ¢ is smooth curve, it can be written as the equality
9 (a_”> _9 (a_”)_ @7)
dt \ds ds \ 0t
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By substituting Eq. (17) into Egs. (26) and (27), we obtain

i 0
E:_(ﬁ@*‘fzcﬂ"‘fﬂ:)
6 dgo 0 aoq d 0F 28
LA N ) P i (28)
—flgo+£2cfl+f37—"
where
1 afl
¢ :K'F h1f2+h2f3:

af
02 = aa_]; +f1h1 _f3h3;
23 = 6—53 + fihy + fohs.

In view of Eq. (23), one finds that #* = 0; consequently, Eq. (28) can be expressed as
follows:

080 (afz

3 = A + fih, — fghg) yF ( JE + fih, + foh ) (29)

On the other hand, because an orthonormal basis is formed by g AF, we have
(0, A) ={9,F) =(A,F)=0. (30)

Hence, if the equations in (30) are differentiated sequentially with respect to t. If we
first take the derivative of the equation

0
=3 (0, A) (31)
with respect to t then, we have

9 dA
0= (aif,c/z) + (go,ﬁ). (32)

. 0p - . of: of:
If the expression —- is replaced with A (a—; + fih, — f3h3) +F (a_: + fih, + f2h3),
then

0A
0= (224 fihy — fuhs) A + (T2 4 fihy + fsha) P, ) + (0,0, (39

Similarly, we have
0

- 5+ 0.0 (34)

=¢ﬁ+ﬁm_mﬁﬂ+ﬁﬁ+ﬁm+ﬁmVWWHmi»

0 0
and
0

0A oF
= <E'?) + (cﬂ.ﬁ)-

(35)

WWW.josa.ro Mathematics Section



Evolution and Inextensibility of Timelike Curves... Ali Osman Aydogdu and Muhammed T. Sariaydin 745

Assume that (Z—f,?) is equal to ¥ , then from (34) it can be obtained that

A oF

Moreover, given that the equation below holds, it can be written using Egs. (34) and
(35) as follows:

A  (df,
= = (aj; + fily — fghg)sowf (36)
J0F df3

== (52 + fit + fuhs ) 0 — A (37)

Theorem 3.4. The time evolution of the g AF can be written in differential equation form as
follows:

oh
a_tl = hl( oz + fihy — f3h3>
oh, 02
a—tz asgl - (fihy + fohs) + iy + hg( ik +6{1h1 fghg) (36)
e (hl (afz + fihy — f3h3) — Ay + d—f)
and
Y= é + fihs + fohs. (39)

Proof: Assume that curve Z—j = (fi + fLbA + f3F)'s flow is inextensible, then the set of
partial differantial equations that follows is valid:

%@f) as<(%f2+f1h1 f3h3)50+w>

0%f, 2
(a;; = (fihy - fghg))m(aiwlhl fihe) B Wyl

2
f: (40)
- (a = t3 (f1h1 fahs) + hzw) 2
df;
+ (ha (324 fia = fohs) + hs) A
df; dip
+ (hz (0 2+ fihy — f3h3> +E>?
with the other hand by positional adapted frame, it can be written as follows:
0 (OA af. af.
()= (h (32 + fil = fuhs ) + s (24 fuls + foh ))so
(41)

+ (a;; — ) A+ (i + %) F.
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Since
d (adq) _ a (aJl)
os\ot) 0dt\ads

and moreover we can show that the equation below satisfies,

ok af
a_tl =Ny (az + fihy — fshs)

ok af d

6t3 =Ny (6 2 + fihy — f3h3) -y +d_s'

In addition, the following relation holds:

(5 (2w ) - )

02 d d 0A
( f3 (f1h2+f2h3)> +£+a_fc’q+lpg

0s?

+ fih, +f2h3) _a_¢>dq

2f
<a523 —(fihy + fohs) + w) o+ (m >

hy
+(h1(af3+f1hz+f2 ) )

and
= (T2 mCl s iny i) 0+ (ha (24 iy foha) - 52)

(hz (a];z ofs +f1h2 + f2h ) h3¢)T

d (67-") _ d (67’)
ds\dt) dt\os

and furthermore, it can be demonstrated that the following equation holds,

As a result,

dh 0°

a_tz af: (f1h2 + f2h 3)+h1¢+h3<af2+f1h1 f3h3)
dh d d
O = ha (L2t fihy — fuha) =y (24 fua + fohs) 4 5

and
d
Y =24 fih, + fohs.

Example 3.5. Let a timelike curve in 3D Minkowski space be given as follows:

o(s) = (cos (%) ,sin (%),%s)

(42)

(43)

(44)

(45)

(46)

(47)
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The parameter s is already the arc—length parameter. We therefore set,

do(s)
ds

(48)

$(s) =

and regard g as the unit timelike tangent vector field along the curve. The second derivative
of the timelike curve ¢ is

)= (-1es ) -2 (3).0)

and its Minkowski norm is ||#’(s)||=1/9 . Hence the curvature of the curve ¢ is the constant
and it is obtained as, (s) = 1/3 . More over one easliy checks that, the evolution g is

5 = (G r ) (h e 5 e 3n) s (-5m+30)

where f; = sin(s), f, = —3cos(s), f3 = 0.

100

-100

20 -40 -20 0 20 40

Figure 1. The evolution of ¢(u, t) is visualized using distinct colors blue (t = 0), red (t = 1), dark green
(t = 2), purple (t = 3), and black (t = 4) making each stage of the inextensible flow easily
distinguishable.

4. CONCLUSIONS

This study contributes to the analysis of curve and surface evolution in Minkowski
space by applying the positional adapted frame to the inextensible flow of timelike curves.
We derived the evolution equations for the adapted frame and obtained conditions under
which timelike curves admit inextensible flows. In the process, studies that integrate timelike
and Frenet frames, together with the Bishop frame, also embrace the concept of IFC. In this
research, we used the g AF mathematical framework to work on the IF of a timelike curve,
using the g AF framework, this study mainly allowed us to examine the surfaces formed by
various timelike curves that were created at each distinct time t of a curve. Additionally, we
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show some partial differentials with respect to parameter t and coordinates utilizing the g AF
of a particular timelike curve in Minkowski space.
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