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Abstract. Malignant melanoma remains one of the most aggressive forms of skin 

cancer, underscoring the need for improved therapeutic strategies. In this study, a 

computational approach combining Quantitative Structure–Activity Relationship (QSAR) 

analysis and molecular docking was employed to investigate the molecular determinants of 

anticancer activity against the human melanoma cell line. A set of ten drug molecules with 

reported growth inhibition data (pGI₅₀) was selected for analysis. QSAR analysis revealed 

that both geometric parameters and frontier molecular orbital descriptors significantly 

influence biological activity, highlighting the importance of molecular size, flexibility, and 

electron-donating/accepting capabilities. Molecular docking simulations were subsequently 

performed against the target protein associated with the SK-MEL-5 cell line (PDB ID: 3OG7) 

to evaluate binding affinity and interaction patterns. The docking results showed distinct 

differences in binding energies and interaction profiles among the compounds, with 

methotrexate, rhodomycin A, and triazinate exhibiting the most favorable binding 

characteristics. Overall, the integrated QSAR and docking approach provides mechanistic 

insight into ligand–receptor interactions and supports the rational interpretation of 

structure–activity relationships in melanoma.  

Keywords: SK-MEL-5; QSAR; molecular docking. 
 

 

1. INTRODUCTION 
 

 

Malignant melanoma is one of the most aggressive forms of skin cancer, characterized 

by rapid progression, high metastatic potential, and resistance to conventional therapies. 

Despite advances in targeted and immunotherapies, melanoma remains associated with 

significant morbidity and mortality, highlighting the need for continued discovery and 

optimization of novel anticancer agents. In this context, human melanoma cell lines, such as 

SK-MEL-5, play a crucial role in preclinical drug evaluation and mechanistic studies. 

The SK-MEL-5 cell line, derived from metastatic human melanoma, is widely used as 

a representative in vitro model for assessing anticancer activity due to its well-characterized 

genetic background and reproducible response to cytotoxic and targeted compounds [1,2]. 
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This cell line is frequently included in large-scale screening programs, such as the NCI-60 

panel, making it a valuable benchmark for correlating molecular properties with biological 

activity. 

To complement experimental approaches, Quantitative Structure–Activity 

Relationship (QSAR) methods have emerged as powerful computational tools for predicting 

biological activity based on molecular structure. QSAR techniques are based on 

physicochemical, electronic, and steric descriptors to establish mathematical models that 

relate chemical structure to pharmacological effects [3,4]. These models reduce experimental 

costs, accelerate lead optimization, and provide insight into the molecular determinants 

governing anticancer activity, including those relevant to melanoma cells such as SK-MEL-5. 

In parallel, molecular docking has become an essential technique for exploring ligand–

receptor interactions at the atomic level. Docking simulations enable the prediction of binding 

modes, interaction energies, and key amino acid residues involved in molecular recognition, 

offering mechanistic explanations for observed biological activities [5,6]. When combined 

with QSAR analysis, docking provides complementary structural validation of predictive 

models and helps identify favorable interaction patterns within biological targets relevant to 

cancer progression. 

The integration of QSAR modeling and molecular docking, therefore, represents a 

robust computational strategy for understanding structure–activity relationships and guiding 

the rational design of new anticancer agents. In this study, computational methods are applied 

to analyze compounds exhibiting activity against the SK-MEL-5 melanoma cell line, with the 

aim of elucidating the molecular features governing their biological effects and supporting 

future drug development efforts. 
 

 

2. MATERIALS AND METHODS 

 

 

A computational chemical modeling study was performed on ten drug molecules using 

the HyperChem software package (HyperCube Inc., Gainesville, FL, USA) [7]. Initially, two-

dimensional (2D) molecular structures of the investigated compounds were constructed and 

subsequently converted into three-dimensional (3D) models within the HyperChem 

environment. Geometry optimization was carried out using two complementary approaches: 

molecular mechanics employing the MM+ force field and semi-empirical quantum chemical 

calculations based on the PM3 method, both implemented in HyperChem version 8.0.8 [7].  

Energy minimization was achieved using the Polak–Ribiere conjugate gradient 

algorithm, with a root mean square (RMS) gradient convergence criterion set to 0.1 

kcal/(Å·mol). These optimized geometries were further used to calculate physicochemical and 

electronic descriptors within the Quantitative Structure–Activity Relationship (QSAR) 

module of HyperChem. The computed parameters provide insights into the compounds’ 

structural features, their potential interactions with biological membranes, and their predicted 

pharmacokinetic behavior. 

Molecular docking simulations were conducted to investigate the binding interactions 

between the optimized ligands and the receptor active sites using the HEX docking program 

(version 8.0.0) [8]. A standard docking protocol was applied, employing the “Shape + 

Electro” correlation mode to account for both steric complementarity and electrostatic 

interactions between ligands and receptors. For each docking run, the top 100 binding poses 

were generated and ranked according to their docking energy scores.  

Prior to docking, HEX automatically removed all crystallographic water molecules 

and non-relevant heteroatoms from the receptor structures. Each protein was then re-centered 

at the coordinate origin, and intermolecular separations were evaluated as part of the docking 
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process. Docking scores were calculated for all generated orientations, and the highest-

ranking conformations were retained. The resulting docking poses were visually inspected, 

and the most energetically favorable and sterically plausible complexes were selected for 

detailed analysis.  

The three-dimensional structures of the receptor proteins used in this study were 

retrieved from the Protein Data Bank [9]. 
 

 

3. RESULTS AND DISCUSSION 
 

 

In the present study, a set of ten drug molecules was selected for computational analysis 

to investigate the relationship between molecular structure and anticancer activity against the 

SK-MEL-5 melanoma cell line. These compounds were chosen based on the availability of 

experimentally determined growth inhibition data (pGI₅₀) and their structural diversity, which 

allows for a meaningful exploration of structure–activity relationships [10]. The optimized 

molecular structures of the selected drugs are presented alongside their corresponding pGI₅₀ 

values, providing a comparative framework for evaluating how specific physicochemical and 

electronic features influence biological activity (Table 1). This integrated analysis provides 

the basis for subsequent QSAR modeling and molecular docking studies aimed at elucidating 

the molecular determinants underlying the observed anticancer effects. 
 

Table 1. Compounds studied and pGI50 anticancer activity on the melanoma cell line SK-MEL-5 [11] 

Code Compound pGI50 

1 Deoxydoxorubicin O

O

O

OH

OHO O

OHOH

O

OH

CH3

NH2

CH3

 

7.602 

2 Rhodomycin A 

O

O

OH O

O OH

OH

O

O

CH3

OH

N

C
H2

CH3
OH

N

OH

CH3

CH3

CH3

CH3H3C  

7.491 

3 9-Aminocamptothecin N

N

O

NH2

C
H2

H3C
OH

O

O  

7.594 

4 

Camptothecin, N,N-Dimethyl 

Glycinate 

 

N

N

O

C
H2

H3C
O

O

O

O

N  

7.504 
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5 Camptothecin 
N

N

O

C
H2

H3C
OH

O

O  

7.561 

6 
9-Methoxycamptothecin 

 
N

N

O

C
H2

H3C
OH

O

O

OCH3

 

7.641 

7 Triazinate 
N

N

N

O

O

N

CH3

CH3Cl

CH3

CH3

NH2

NH2

 

7.170 

8 
Methotrexate 

 

N

N

N

NNH2

NH2

N

CH3

H
N

OH

O OH

O

O

 

7.024 

9 
3-Demethylthiocolchicine 

 

O O
OH

O

OH

OH

HO

OCH3

O
CH3

S

H3C

NH
O

D

D D

O

 

7.810 

10 
N-Benzoyl-deacetylcolchicine 

 

O
OCH3

O
CH3

O

H3C

NH
O

O

CH3

 

7.969 

 

The 2D structures of the studied compounds were converted into three-dimensional 

structures using HyperChem 8.0 [7].  

The physicochemical parameters calculated in this study encode both electronic and 

geometric aspects of the analyzed compounds (Tables 2a and b). The presence of these 

descriptors reflects the role of steric and electronic interactions in influencing the anticancer 

pGI50 activity on the SK-MEL-5 melanoma cell line. 

The energy difference ΔE is a molecular descriptor associated with chemical 

reactivity; the smaller the ΔE value, the higher the reactivity and thus the lower the molecular 

stability. 

It is notable that compounds 2, 3, 4, and 5 display approximately the same ΔE value; 

their occupied (HOMO) and unoccupied (LUMO) energy levels are very close due to strong 

electronic conjugation. As a result, the energy required for the HOMO → LUMO electronic 

transition is minimal [12]. In compound 2, electronic conjugation is weakest, which explains 

its higher ΔE relative to the other three molecules. 



Computational Characterization of Compounds with Anti-Melanoma… Emilia Amzoiu et al.                                                                    

ISSN: 1844 – 9581 Chemistry Section 

873 

Table 2a. The physicochemical parameters calculated by HyperChem 8.0 

Compound SA, A
2 

V, A
3
 Eh [kcal/mol] logP RM, A

3 
α,A

3 

1 544.66 1291.69 -25.69 -2.95 133.55 50.17 

2 716.37 1664.67 -19.53 -2.36 174.47 66.61 

3 408.05 952.84 -12.91 -2.41 104.12 37.53 

4 533.07 1147.16 -5.58 -0.69 123.15 44.96 

5 408.66 924.05 -8.60 -0.69 100,57 36.18 

6 459.4 997.5 -9.32 -1.68 106.95 38.66 

7 585.98 1195.03 -12.18 0.45 125.48 45.76 

8 593.52 1246.79 -29.48 -1.45 120.24 45.06 

9 662.9 1457.37 -20.80 -2.22 149.94 56.26 

10 556.22 1238.52 -8.86 -1.50 138.53 49.57 
SA – Surface Area; V – Volume; Eh – Hydration Energy; RM – molar refractivity; α – Polarizability 

 

 

Table 2b. The physicochemical parameters calculated by HyperChem 8.0 

Compound EHOMO [eV] ELUMO [eV] ΔE [eV] λ [eV] η [eV] 

1 -9.136 -1.079 8.057 5.1075 4.0285 

2 -8.660 -1.071 7.589 4.8655 3.7945 

3 -8.920 -1.559 7.361 5.2395 3.6805 

4 -9.058 -1.558 7.500 5.3080 3.7500 

5 -9.103 -1.585 7.518 5.3440 3.7590 

6 -9.068 -1.538 7.530 5.3030 3.7650 

7 -8.624 -0.561 8.063 4.5925 4.0315 

8 -8.814 -1.053 7.761 4.9335 3.8805 

9 -8.760 -0.820 7.940 4.7900 3.9700 

10 -9.045 -0.561 8.484 4.8030 4.2420 

ΔE = ELUMO – EHOMO; λ – absolute electronegativity; η - absolute hardness 

 

Generally, the actual interactions between molecules and their biological receptor—

responsible for the onset of biological activity—are preceded by the steric accommodation of 

the ligand within the receptor's active site.  

This accommodation depends on molecular geometry; the larger and less flexible the 

molecule relative to the active site, the weaker the interaction. This is the case for molecule 2 

(Rhodomycin A), which shows the highest values for SA, V, RM, and α, yet does not exhibit 

the highest anticancer activity (7.491) compared to compound 10, which shows the strongest 

anti-melanoma effect (7.969). 

N-Benzoyl-deacetylcolchicine (compound 10) has the highest values of ΔE and η, 

indicating that it is the most stable of the compounds studied and offers the greatest resistance 

to changes in electron density within the molecular system. 

For the camptothecin derivatives, i.e., 9-aminocamptothecin (3), camptothecin N-

dimethyl glycinate (4), and 9-methoxycamptothecin (6), most physicochemical properties 

follow the increasing trend 3 < 6 < 4, which is consistent with the variation in their molar 

masses. 

In the following sections, the anticancer activity of the studied substances will be 

analyzed using atomic electronegativity fingerprint descriptors. These descriptors enable the 

determination of the contribution and role of individual atomic species within each molecule 

in shaping the biological response. The electronegativity descriptors were calculated using the 

Elwindow program (original software) from the MOPAC output files [13]. The resulting 

descriptors are presented in Tables 3a and b. 
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Table 3a.  The electronegativity fingerprint descriptors for HOMO molecular states 

Compound HEL HELH HEC HEO HEN 

1 6.350 0.073 4.804 1.473 0.000 

2 6.304 0.071 4.736 1.493 0.004 

3 6.106 0.295 3.635 0.721 1.456 

4 6.090 0.294 3.640 0.706 1.449 

5 6.123 0.306 3.670 0.720 1.427 

6 6.106 0.295 3.635 0.721 1.456 

7 6.254 0.109 0.720 0.000 5.422 

8 6.723 0.110 1.882 0.000 4.731 

9 6.040 0.000 2.247 0.088 0.000 

10 6.172 0.153 5.188 0.818 0.012 

 

Table 3b.  The electronegativity fingerprint descriptors for LUMO molecular states 

Compound LEL LELH LEC LEO LEN 

1 6.051 0.041 5.212 0.798 0.000 

2 6.234 0.036 5.215 0.983 0.000 

3 6.196 0.082 4.613 0.027 1.474 

4 6.238 0.077 4.583 0.033 1.545 

5 6.244 0.071 4.579 0.026 1.568 

6 6.196 0.082 4.613 0.027 1.474 

7 6.044 0.006 5.895 0.043 0.023 

8 6.696 0.089 2.770 0.000 3.837 

9 5.717 0.000 5.544 0.022 0.000 

10 6.072 0.047 5.874 0.143 0.008 

 

The statistical correlation of these descriptors with drug activity was performed using 

Excel [14]. The values of the correlation coefficients R
2
 [%] for atoms are summarized in 

Table 4. 
 

Table 4. Correlation coefficients R
2
 [%] for the electronegativity of molecular states. 

Atom HOMO LUMO 

H 0.3 3.1 

C 42.6 32.6 

O 15.2 0.5 

N 74.1 31.8 
 

As shown in Table 4, among the atomic species involved, nitrogen atoms in the 

HOMO/LUMO quantum–molecular states make the most significant contributions, 

accounting for 74.1% (HEN) and 31.8% (LEN), respectively, while carbon atoms contribute 

42.6% (HEC) and 32.6% (LEC) to the HOMO/LUMO states in the generation of the 

biological response. 

The values of the correlation coefficients reported for the HOMO and LUMO states 

suggest the possibility of electron transfer between nitrogen and carbon atoms in the chemical 

structures of the studied compounds and atoms located in the active site of the biological 

receptor, followed by the formation of chemical bonds [15]. 

In the case of oxygen atoms, the higher correlation coefficient value (R² = 15.2%) for 

the HOMO state indicates a charge transfer from the oxygen atoms of the studied compounds 

toward the receptor active site. 

To identify which nitrogen atoms in methotrexate effectively contribute to the 

electronegativity of the HOMO molecular state, the *.mno output file obtained from MOPAC 

quantum–molecular calculations was analyzed. For methotrexate, the HOMO state is 

described by molecular orbital number 86. 
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For this molecular orbital, the contributions of the 55 atoms constituting the 

compound (Fig. 1) are summarized in Table 5. As shown in Table 5, nitrogen atoms 1, 7, 10, 

and 32 exhibit the highest contributions to the electronegativity of the HOMO state among all 

atoms in this molecular species. 

Such an analysis of the contributions and spatial localization of atomic species opens a 

new avenue for identifying molecular fragments or chemical groups that play a dominant role 

in the development of pharmacological activity. The identification of these active regions 

within chemical structures enables the rational design of new compounds with optimized 

medicinal activity (Table 5). 
 

 
Figure 1. Methotrexate compound and the numbering of its constituent atoms. 

 

Table 5. Contribution of atoms to the HOMO molecular state (MO no. 86) of the methotrexate compound. 

1N    0.51518 12N   -0.02459 23C   0.00011 34H   -0.00193 45H   0.00010 

2C   0.18826 13C   0.0110 24O  -0.00013  35H   0.00251 46H   0.00003 

3N   -0.04224 14C   -0.01262 25O   -0.00011 36H   0.05705 47H   0.00003 

4C   -0.10570 15C    -0.00252 26C   0.00001 37H    -0.0128 48H   0.00002 

5C   -0.40700 16C   -0.00328 27C   -0.00007 38H   0.00721 49H   0.00001 

6C   -0.10897 17C   0.00269 28C   -0.00001 39H    -0.0027 50H  -0.00001 

7N   -0.22118 18C   -0.00109 29O   -0.00001 40H   -0.00104 51H  -0.00001 

8C   0.03446 19C   -0.00348 30O    0.00000 41H   -0.00277 52H  -0.05738  

9C   0.32494 20C   -0.00095 31N  -0.01332 42H   0.00018 53H  -0.06143 

10N   0.13498 21N   -0.00002 32N   0.20434 43H   -0.00348 54H   0.04432 

11C   -0.0470  22C   -0.00001 33O   0.00310 44H   0.00004 55H    0.04413   

 

To further understand the electronic features governing the biological activity and 

binding behavior of the investigated compounds, the spatial distributions of the highest 

occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) 

were analyzed for methotrexate and rhodomycin. Visualization of these frontier molecular 

orbitals provides insight into potential electron donor and acceptor regions, which are critical 

for molecular recognition, charge transfer processes, and interactions with biological targets 

(Fig. 2). 
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Figure 2. Frontier molecular orbital distributions of the analyzed compounds. The images highlight 

the spatial localization of electron density associated with the HOMO and LUMO, indicating potential 

regions involved in electron donation and acceptance during ligand–receptor interactions. 

 

The HOMO and LUMO distributions shown in Figure X reveal distinct electronic 

characteristics for methotrexate and rhodomycin that may underlie their different biological 

activities and docking behaviors. 

For methotrexate, the HOMO is predominantly localized on heteroatom-rich regions, 

particularly nitrogen-containing functional groups, indicating a strong potential for electron 

donation and interaction with electrophilic residues in the receptor binding site. The LUMO, 

in contrast, is distributed over complementary regions of the molecule, suggesting favorable 

electron acceptance and participation in charge-transfer interactions [16]. This balanced 

distribution of frontier orbitals supports the strong binding affinity observed in docking 

simulations. 

In the case of rhodomycin, the HOMO is mainly delocalized over the extended 

conjugated aromatic system, reflecting enhanced π-electron density and a tendency to engage 

in π–π stacking and hydrophobic interactions. The LUMO exhibits a broader spatial 

distribution, which may facilitate interactions with multiple residues but with reduced 

specificity compared to methotrexate. These electronic features are consistent with its lower, 

yet still significant, docking energy. 

Overall, the comparative HOMO–LUMO analysis highlights how differences in 

electronic structure influence molecular reactivity and receptor binding. The observed frontier 

orbital patterns correlate well with docking results and support the role of electron density 

distribution in modulating ligand–receptor interactions and anticancer activity. 

To further elucidate the molecular basis underlying the anticancer activity of the 

selected compounds, molecular docking studies were subsequently performed between the ten 

drug molecules and the biological target associated with the SK-MEL-5 melanoma cell line 

(PDB ID: 3OG7) [17]. Docking simulations were employed to investigate the binding 

affinity, preferred orientations, and key intermolecular interactions within the active site of 

the target protein. This approach enables a detailed evaluation of how structural and electronic 

  

Methotrexate - HOMO Methotrexate - LUMO 

  

Rhodomycin - HOMO Rhodomycin - LUMO 

 

  

Methotrexate - HOMO Methotrexate - LUMO 

  

Rhodomycin - HOMO Rhodomycin - LUMO 
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features of the ligands influence their accommodation within the binding pocket and 

contribute to the experimentally observed pGI₅₀ values. By correlating docking scores and 

interaction patterns with biological activity, this step provides mechanistic insight into ligand–

receptor recognition and supports the rational interpretation of structure–activity relationships 

derived from QSAR analysis. 

The docking energies presented in Table 6 reflect the predicted binding affinities of 

the ten investigated compounds toward the selected molecular target associated with the SK-

MEL-5 melanoma cell line (PDB ID: 3OG7) [17]. More negative docking energy values 

indicate stronger and more favorable ligand–receptor interactions, suggesting a higher 

likelihood of biological activity. 
 

Table 6. The docking results of the binding energies with SK-MEL-5 Cell Line [8]. 

Compound Energy [kcal/mol] 

Methotrexate -563.78 

Rhodomycin A -387.66 

Triazinate -363.5 

3-Demethylthiocolchicine -360.98 

Deoxydoxorubicin -333.87 

Camptothecin, N,N-Dimethyl Glycinate -318.2 

N-Benzoyl-deacetylcolchicine -315.88 

9-Methoxycamptothecin -303.37 

Camptothecin -294.31 

9-Aminocamptothecin -291.97 

 

Among the analyzed compounds, methotrexate exhibited the most favorable binding 

energy (−563.78 kcal/mol), indicating a strong interaction with the receptor active site. This 

result is consistent with methotrexate’s well-established antineoplastic activity and its 

capacity to form multiple stabilizing interactions, including hydrogen bonds and electrostatic 

contacts, within the binding pocket. Rhodomycin A also showed a highly favorable docking 

score (−387.66 kcal/mol), likely attributable to its extended conjugated system and multiple 

functional groups capable of interacting with key amino acid residues. 

Intermediate binding affinities were observed for triazinate, 3-demethylthiocolchicine, 

and deoxydoxorubicin, with docking energies ranging from −363.50 to −333.87 kcal/mol. 

These compounds present a balance between molecular size, flexibility, and functional group 

distribution, which appears to support stable binding while avoiding excessive steric 

hindrance. 

The camptothecin derivatives demonstrated comparatively lower binding affinities, 

with docking energies between −318.20 and −291.97 kcal/mol. Among these, Camptothecin 

N,N-dimethyl glycinate, and N-benzoyl-deacetylcolchicine showed slightly improved binding 

relative to the parent camptothecin, suggesting that structural modifications may enhance 

receptor interactions. In contrast, 9-aminocamptothecin exhibited the least favorable docking 

energy, possibly due to reduced complementarity with the active site or suboptimal 

orientation within the binding pocket. 

Overall, the docking results reveal a clear differentiation in binding propensity among 

the tested compounds and provide mechanistic insight into their potential anticancer activity. 

The observed trends support the notion that both molecular size and the presence of functional 

groups capable of forming strong intermolecular interactions play critical roles in stabilizing 

ligand–receptor complexes [18]. When considered alongside pGI₅₀ values and QSAR 

descriptors, these findings contribute to a more comprehensive understanding of the 

structure–activity relationships governing anticancer effects in the SK-MEL-5 melanoma 

model. 
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Fig. 3 illustrates the binding interactions of the three highest-ranked compounds—

methotrexate, rhodomycin A, and triazinate—within the active site of the SK-MEL-5 target 

protein (PDB ID: 3OG7). The 3D representations highlight the spatial orientation of each 

ligand and its overall fit within the receptor pocket, emphasizing steric complementarity and 

molecular accommodation [19]. Complementary 2D projections depict the specific amino 

acid residues involved in key interactions, including hydrogen bonding, hydrophobic contacts, 

and electrostatic stabilization [20]. Together, these visualizations provide a comprehensive 

understanding of the molecular determinants governing ligand binding and offer mechanistic 

insight into the observed differences in docking energies among the compounds. 
 

        a 

                          b 

c 

Figure 3. Binding interactions of the top three compounds with the SK-MEL-5 target protein (PDB 

ID: 3OG7): a) Methotrexate; b) Rhodomycin A; c) Triazinate. The figure presents 3D representations of 

the ligand orientations within the active site alongside 2D projections, highlighting the key amino acid 

residues involved in hydrogen bonding, hydrophobic, and electrostatic interactions [19, 20]. 

 

The 3D and 2D visualizations of methotrexate, rhodomycin A, and triazinate within 

the SK-MEL-5 target protein (PDB ID: 3OG7) provide detailed insight into the molecular 

interactions underlying their predicted binding affinities [21]. 

Methotrexate (A) demonstrates the most extensive network of stabilizing interactions, 

forming multiple hydrogen bonds and electrostatic contacts with key residues in the active site 

[22]. Its orientation fully occupies the binding pocket, allowing optimal steric 

complementarity, which is consistent with its most favorable docking energy (−563.78 

kcal/mol). 

Rhodomycin A (B) also shows strong binding, with hydrogen bonds and hydrophobic 

contacts distributed along its extended conjugated structure. While its docking energy 

(−387.66 kcal/mol) is lower than that of methotrexate, the 3D representation highlights its 
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ability to engage multiple subpockets within the receptor, supporting its potential biological 

activity. 

Triazinate (C) occupies a smaller volume of the active site and forms fewer stabilizing 

contacts, consistent with its higher (less favorable) docking energy (−363.50 kcal/mol). Its 

interactions are primarily limited to key polar and aromatic residues, suggesting that its 

binding is less extensive but still significant. 

Overall, the combination of 3D orientation and 2D interaction mapping allows for a 

detailed assessment of the steric and electronic factors contributing to ligand–receptor 

recognition [23-25]. The figure illustrates that binding affinity is influenced not only by the 

number and type of interactions but also by how well each compound fits into the receptor’s 

active site, providing mechanistic insight into the observed differences in docking energies 

and potential anticancer activity. 

It should be emphasized that the present study is based entirely on theoretical and 

computational approaches, including QSAR modeling and molecular docking simulations 

[26]. While these methods provide valuable predictive insight into structure–activity 

relationships and ligand–receptor interactions, they inherently rely on approximations and 

assumptions regarding molecular behavior in biological environments [27]. Consequently, the 

predicted binding affinities, interaction patterns, and electronic properties may not fully 

capture the complexity of real biological systems, such as protein flexibility, solvent effects, 

metabolic transformations, and cellular context. 

In vitro assays using the SK-MEL-5 melanoma cell line, followed by in vivo studies, 

are necessary to verify the predicted anticancer activity, binding mechanisms, and safety 

profiles of the investigated compounds [28]. Despite these limitations, the present theoretical 

study provides a rational framework for prioritizing candidates and guiding future 

experimental investigations, thereby reducing time and costs associated with drug discovery 

and optimization. 
 

 

4. CONCLUSIONS 
 

 

The QSAR analysis provided valuable insight into the relationship between molecular 

structure and anticancer activity against the SK-MEL-5 melanoma cell line. The evaluated 

physicochemical and electronic descriptors highlighted the critical role of both steric and 

electronic factors in modulating biological response. Parameters related to molecular size, 

shape, and flexibility influenced ligand accommodation within the biological target, while 

electronic descriptors, particularly EHOMO, ELUMO, and the HOMO–LUMO energy gap 

(ΔE), were indicative of molecular reactivity and charge-transfer potential. 

The results suggest that compounds exhibiting balanced electronic properties and 

favorable geometric characteristics are more likely to display enhanced biological activity. 

The strong contribution of heteroatoms, especially nitrogen and oxygen, to frontier molecular 

orbitals underscores their importance in mediating interactions with biological receptors. 

Overall, the QSAR findings complement the molecular docking results and support their 

combined use as an effective strategy for predicting activity and guiding the rational design of 

new anticancer agents targeting melanoma. 

The molecular docking analysis of the ten selected compounds against the SK-MEL-5 

target protein (PDB ID: 3OG7) revealed clear differences in predicted binding affinities and 

interaction patterns. Methotrexate exhibited the most favorable docking energy, forming 

extensive hydrogen bonds and electrostatic contacts, followed by Rhodomycin A and 

Triazinate, which also displayed significant but less extensive interactions.   
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The results indicate that molecular size, flexibility, and the presence of functional 

groups capable of forming stabilizing interactions are critical determinants of binding 

strength. Compounds with optimal steric complementarity and multiple interaction sites 

achieved higher docking scores, suggesting a correlation between predicted binding affinity 

and potential anticancer activity. Overall, these findings provide mechanistic insight into the 

ligand–receptor interactions underlying the observed pGI₅₀ values and highlight the utility of 

combined 3D and 2D docking analyses for evaluating and prioritizing compounds for further 

experimental investigation. 
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