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Abstract. Artificial neural networks (ANNs) have transformed fluid dynamics 

modeling, enabling the analysis of complex phenomena with remarkable accuracy. This paper 

uses an ANN with the Levenberg-Marquardt optimization technique to investigate the 

interaction of thermophoresis diffusion and Brownian motion effects on 

Magnetohydrodynamic Reiner-Philippoff nanofluid flow (MHD-RPN) adjacent to a shrinking 

sheet. Numerical solutions are obtained by using the NDSolve solver within Mathematica, 

resulting in a dataset that encompasses several scenarios via parameter modifications. This 

data set, which contains input-output pairs, is used to train the NNs. The efficiency of the 

suggested ANN methodology is shown by performance assessments using MSE, error 

histograms, correlation, and regression plots. Graphs of temperature and concentration 

profiles are shown for several MHD-RPN scenarios by variations of the parameters, i.e., the 

thermophoresis parameter (  ), Brownian Motion Parameter (  ), Prandtl Number (  ), 

the Schmidt number (   ), and the thermal radiation ( ), respectively. Increasing Nb 

increases temperature but decreases concentration, while increasing Nt improves heat and 

mass transport. However, radiation and greater Prandtl numbers reduce temperature and 

concentration. The model's effectiveness is evaluated through MSE, observed between 10
-09

 

and 10
-11

 across different scenarios, confirming the robustness and efficiency of the AI-driven 

solution. 

Keywords: Magnetohydrodynamic Reiner–Philippoff non-Newtonian nanofluid; 

shrinking sheet; thermophoresis parameter; Brownian parameter; Levenberg-Marquardt 

back-propagation. 

 

 

1. INTRODUCTION  

 

 

Rapid heat transfer has been a growing technical discipline for decades. Researchers 

are employed to improve thermal conductivity and heat transfer rate. They are also attempting 

to decrease pumping power, frictional loss, and pressure drop for the heat transfer fluid. 

Nanofluid is a novel type of heat transfer fluid that has been designed to give superior thermal 

characteristics for heat transfer. Nanofluid is created by dissolving a small amount of 

nanoparticles in base fluids such as water, glycol, and others. It is worth noting that 

Buongiorno [1] explored convective transport in a nanofluid to better understand the observed 

heat transfer improvement under convective conditions. Buongiorno presented a novel model 

based on basic fluid and nanoparticle relative velocities. He contended that in the deficiency 

of turbulent effects, Brownian diffusion [2] and thermophoresis prevail. He created 

conservation equations based on these two effects. Many scientists who wanted to consider 
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using nanofluid in conjunction with different non-Newtonian fluids turned to this discovery as 

their primary source of information. To mention a few, Saleem et al. [3], Waqas et al. [4] and 

Mahat et al. [5] researched the electrically conducting nanofluid. The Reiner-Philippoff fluid 

model has attracted attention recently because it can behave like a Newtonian fluid. Using the 

Karman-Pohlhausen approach, Kapur and Gupta [6] examined the boundary layer equations 

for Reiner-Philippoff fluid inside a channel. In the meantime, Reiner-Philippoff, Ellis, 

Ostwald de Waele, generalized Bingham, and Prandtl Eyring fluid velocity profiles were 

compared by Cavatorta and Tonini [7].  

Applications in industry and technology require efficient, seamless work to achieve 

the best performance. Pure (Newtonian) water is typically used as the cooling agent. Due to 

their effectiveness and applicability, the usage of non-Newtonian fluids seems more and more 

applicable in various operations [8]. Non-Newtonian fluids come in a wide variety of 

varieties, each with unique properties. Shear-thickening fluids exhibit viscosity increases 

proportionate to shear rate, whereas shear-reducing fluids exhibit Newtonian fluid behaviour 

at extremely high shear rates. The Reiner-Philippoff model, one of the non-Newtonian class 

of models, is more fascinating to study because it depicts the behavior of a Newtonian fluid 

[9] at zero or large values of shear stress causes non-Newtonian behavior and affects other 

values. The study of the RP model has attracted the attention of many academics due to its 

significant role in engineering applications. 

The study looked at the analysis of flows traveling over various geometries and their 

various effects on the flow field [10]. Since its existence affects the pace of heat transfer, 

including thermal radiation in the flow presents greater difficulties and substantial 

contributions. Thermal radiation is useful in solar technologies [11], aircraft, medicine, and 

spacecraft operations. Rosseland invented thermal radiation, and Ghosh, Mukhopadhyay, 

Yashkun, and others have greatly expanded on his concepts [12], Agbaje et al. [13, 14], and 

Muhammad et al. [15] fluid flow in MHD non-Newtonian, including fluids with nanoparticles 

over a shrinking sheet, was investigated. Due to its capacity to affect fluid characteristics, the 

influence of the magnetic field, also known as magnetohydrodynamics (MHD), is one of the 

frequently taken into consideration effects in fluid flow investigations. The drag Lorentz force 

is launched when MHD is present, which might prevent boundary layer separation. In a study 

by Rashidi et al. [16], the analysis of the MHD's presence was emphasized. In addition, 

Hussain et al. [17] and Sheikholeslami et al. carried out a study on MHD flow in the free 

convection mode. Haq et al. [18], on the other hand, explored the MHD flow by incorporating 

the nanoparticles. Khan et al. [19, 20], Srinivasulu and Goud [21], Khashi'ie et al. [22], Zhang 

et al. [23], all reported on further work on MHD flow. Additionally, Ashwinkumar et al. [24] 

have reported on their investigation into MHD hybrid nanofluid flow over various geometries. 

The research of the RPF model combined with nanofluid is innovative; however, it is 

constrained and leaves several gaps that need to be filled. Therefore, the goal of this study is 

to deepen our understanding of the unique properties of the Reiner-Philippoff fluid embedded 

in thermophoresis and Brownian diffusion under MHD conditions.  

With recent technology innovations, more contemporary and efficient controllers for 

complicated processes are being built. The Artificial Neural Network (ANN) [25, 26] has 

emerged as a viable alternative to the automatic control of nonlinear systems with many 

inputs and outputs. These systems have proven their capacity to address a wide range of 

operations, from simple applications to sophisticated industrial processes. To represent varied 

applications in expanded sectors, a stochastic numerical computing solver was constructed 

using the capabilities of evolutionary/swarming computing-based optimization methodologies 

related to linear and nonlinear differentiation and neural network models for solving equations 

[27,28]. Contemporary stochastic numerical computer solver implementations include 

nonlinear circuits [29], atomic physics, thermodynamics, astrophysics, 
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magnetohydrodynamics [30], haemoglobin, fluid dynamics [31], nanotechnology [32], and 

random matrix models [33, 34]. All of the facts established the significance of synthetic 

solutions based on intelligent algorithms (AI) developed research domain and studied the 

latest algorithms for non-linear fluid can be helpful for finer analysis of complex dynamic 

problems [35]. 

The objective of this research is to implement an ANN [36] model to analyze the 

effect of MHD-RPN between shrinking sheets. To train, validate, and assess performance 

valuation indicators, we used three multi-layer feed-forward networks using the back-

propagation LMM algorithmic program [31, 34, 37]. The ANN approach is a way of 

processing data that is based on simulating the human brain. Models for forecasting and 

evaluating are regularly made using it. Layers of several mutually interconnected neurons 

make up an ANN. An ANN normally consists of three different sorts of layers: input, hidden, 

and output. Outside sources provide information about the enquiry to the input layer. The 

hidden layer(s) connect to other levels rather than the outside world. The result is sent outside 

by the output layer. Each input neuron in the feed-forward ANN has a weight coefficient. 

These weight coefficients are multiplied by the input signals to determine each neuron's input 

signal, which is subsequently added. The network architecture is defined as the number of 

hidden layers and hidden neurons. The input volume and network architecture are closely 

connected. If the performance of the first layer is poor, it is recommended to start with one 

hidden layer and work your way up to two hidden layers. The number of neurons in the 

hidden layer will boost the network's power. 

It has not yet been investigated how the MHD-RPN model uses an ANN model. Since 

Brownian and thermophoresis parameter effects were taken into account, the originality of the 

current work focused on the usefulness of the ANN approach. According to the results of the 

ANN process, several parameters are investigated, and numerical results are provided. No 

prior studies of this nature have been carried out, according to a thorough review of the 

literature. Because it attempts to fill a vacuum in the corpus of knowledge in this field, this 

study is significant. The results are presented and developed using graphs and numerical 

benchmarks. Section 2 presents the mathematical model for the issue under investigation. In 

section 3, the LMM approach is laid out. The effects of different factors on physical quantities 

are covered in Section 4. Section 5 concludes. 

 

 

2.  MATHEMATICAL FORMULATION 

 

 

The steady two-dimensional boundary layer flow of a Reiner-Philippoff nanofluid 

across a declining surface is taken into account; it is assumed that the external pressure on the 

plate is in the  -direction and that the base fluids contain nanoparticles.         
 

  

represents velocity with      The magnetic field         
 

 

 , where    is the constant 

magnetic strength. The radiative heat flux will be considered as     (
    

   ) (
   

  
)  and 

      
      

 . Here    and    represent the Stefan-Boltzmann constants and the mean 

absorption, respectively. Brownian and thermophoresis diffusion    &    effects are 

engaged. The model used to illustrate the current issue underwent boundary layer 

approximations first. Flow geometry for the thermophoresis diffusion and Brownian motion 

effects on magnetohydrodynamic Reiner-Philippoff nanofluid flow adjacent to a shrinking 

sheet is presented via Fig. 1, whereas Fig. 2 is constructed for the neural networks diagram. 
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Figure 1. Flow of Geometry. 

 

The controlling boundary layer equations are hence [38, 39] 
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 as originally viewed by subjected to the following boundary condition: 
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Here, we take constant values   ,   While the ambient temperature    and 

nanoparticle fraction    have reached their maximum levels and are infinitesimally small. 

 

 

2.1. SIMILARITY TRANSFORMATION 

 

 

Study the similarity variables [40, 41]: 
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with the stream function  . Here: 
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with       , In the meantime, the constant mass flux parameter is represented by      
 . Here,     and     Indicate the suction and impermeable instances. Then, one 

succeeds: 
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 where     shows a shrinking sheet. 
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2.2. METHODOLOGY 

 

 

The method approximates the inherently non-linear nature of the MHD-RPN system 

by initially reducing the governing partial differential equations (PDEs) to obtain a set of 

ordinary differential equations (ODEs) by using a similarity transformation. An advanced 

Adams numerical method is employed for generating the dataset required in the ANN-LMA 

for training the neural networks. 'NDSolve' in Wolfram Mathematica is used to solve 

equations of MHD-RPN using the Adam numerical solver. Then we shift the result from 

Mathematica to MATLAB and select input from 0 to 20 with a step size of 100. The 'nftool' 

algorithm, which is a useful tool in the MATLAB software package's neural networks (NN) 

toolbox, is used to carry out the methodology described here for the suggested back-

propagated NN, and the Levenberg-Marquardt approach is used to determine the network 

weights. The approach is divided into two sections: the first section contains the key 

information needed to create a dataset for LM-NN, and the second section describes the steps 
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taken to put that information into practice. This design of the neural network is the basis for 

the configuration in Figs. 2a and 2b represent the overall flow chart of MHD-RPN. Since they 

introduce non-linearity in the output of individual neurons, activation functions form a crucial 

part of this architecture. Since it allows the network to view and comprehend complicated 

patterns and relationships in the data, this non-linearity is necessary. In addition, by enabling 

gradient-based weight and bias adjustments during training, activation functions assist the 

back-propagation method. As a result, the method enhances the precision and stability of flow 

measurements, particularly when non-Newtonian fluids are concerned or non-invasive 

assessments of drilling fluids are being performed. 

 

 
a 

 
b 

Figure 2. a. Neural Network for MHD-RPN; b. Flow Chart of MHD-RPN. 

 
Table 1. Constant parameter values 

                        

0.1 0.1 7 5 5 0.01 2.4 0.1 1.5 -1 



Nonlinear Analysis of Levenberg-Marquardt Optimized... Aamra Urooj et al.  

ISSN: 1844 – 9581 Physics Section 

925 

3. RESULTS AND DISCUSSION 

 

 

3.1. ANN MODEL RESULTS 

 

 

The NDSolve solver is used to create the reference data set in the Mathematica 

program. Diagrams are used to graphically illustrate the numerical solutions that occur. Table 

2 displays five scenarios with three cases for each scenario. For all NDSolve method 

scenarios, the step size is 0.20, and the input range is 0 to 20. After creating the data set, the 

RPN model is solved using the "nftool" command. Figs. 3-7 show the MHD-RPN solution for 

each scenario of Case 1 in the form of a performance plot, histogram plot, regression plot, and 

training state and fitting plot. Figs. 3-7 show the plots of the Performance plot, Error 

histogram, Regression, Training state, and. A regression plot is a statistical graph that depicts 

the correlation between two variables. 

 
Table 2. Variations of physical quantities of MHD-RPN. 

Scenarios Cases 
Physical Quantities 

Nt Nb Pr Sc R 

01 

1 0.1 0.1 7 5 5 

2 0.3 0.1 7 5 5 

3 0.5 0.1 7 5 5 

02 

1 0.1 0.1 7 5 5 

2 0.1 0.3 7 5 5 

3 0.1 0.5 7 5 5 

03 

1 0.1 0.1 3 5 5 

2 0.1 0.1 5 5 5 

3 0.1 0.1 7 5 5 

04 

1 0.1 0.1 7 1 5 

2 0.1 0.1 7 3 5 

3 0.1 0.1 7 5 5 

05 

1 0.1 0.1 7 5 5 

2 0.1 0.1 7 5 10 

3 0.1 0.1 7 5 15 

 

Fig. 3 shows the mean-squared error curves for training, testing, and validation of case 

1 for all possible scenarios. The figure makes it clear that the best validation performance for 

Case 1 of Scenario 1 is 7.55×10
-11

, Scenario 2, the best validation performance is 3.52×    , 

Scenario 3, the best validation performance is 7.47×10
-11

, Scenario 4, the best validation 

performance is 7.87×10
-11

, Scenario 5, the best validation performance is 1.03×10
-10

 in time 

less than 5 sec in all. In a performance plot, the target variable's actual values are shown on 

the horizontal axis, and the MHD-RPN model's predicted values are shown on the vertical 

axis. The error histogram for case 1 across all five scenarios is displayed in Fig. 4. The 

maximum values depicting the errors are roughly equal to zero, as can be seen from the plots 

of the error histograms, which supports the validity of the method. The training state analysis 

for Case 1 for all MHD-RPN scenarios is depicted graphically in Fig. 5. A balance of gradient 

and mu values suggests that the neural network is making weight updates in a controlled and 

efficient manner. 

The criteria for training are 80%, validation is 10% and testing is 10%. Table 3 below 

shows statistical results that are obtained after training the model on a given data set. 
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Table 3. Performance of MHD-RPN. 

Scenarios Case 
MSE data 

Performance Gradient Mu 
Final 

Epoch 
Time 

Training Testing 

1 

1 3.43×10-10 2.31×10-10 7.55×10-11 9.9×10-8 1.00×10-0.8 310 04s 

2 3.96×10-10 8.40×10-10 7.21×10-10 9.9×10-8 1.00×10-0.8 15 <5s 

3 3.38×10-10 3.55×10-11 3.52×10-9 9.9×10-8 1.00×10-0.8 14 <5s 

2 

1 3.67×10-11 1.47×10-10 3.52×10-9 9.9×10-8 1.00×10-0.8 31 <5s 

2 7.68×10-10 1.27×10-11 9.99×10-11 9.9×10-8 1.00×10-0.8 388 4s 

3 2.22×10-11 3.13×10-10 4.73×10-10 9.9×10-8 1.00×10-0.8 91 <5s 

3 

1 1.40×10-11 1.17×10-10 7.47×10-11 9.9×10-8 1.00×10-0.8 268 03s 

2 2.44×10-10 1.92×10-11 4.87×10-9 9.9×10-8 1.00×10-0.8 69 01s 

3 4.08×10-10 4.375×10-9 6.99×10-11 9.9×10-8 1.00×10-0.8 17 <5s 

4 

1 3.20×10-10 2.40×10-10 7.87×10-11 9.9×10-8 1.00×10-0.8 317 04s 

2 1.62×10-11 2.20×10-10 2.11×10-10 9.9×10-8 1.00×10-0.8 64 <5s 

3 4.09×10-10 4.55×10-11 2.99×10-11 9.9×10-8 1.00×10-0.8 17 <5s 

5 

1 3.90×10-11 7.05×10-10 1.03×10-10 9.9×10-8 1.00×10-0.8 18 <5s 

2 3.31×10-10 1.70×10-11 2.99×10-11 9.9×10-8 1.00×10-0.8 34 <5s 

3 3.24×10-10 4.17×10-11 2.99×10-9 9.9×10-8 1.00×10-0.8 74 <5s 

 

The regression analysis for Case 1 for all MHD-RPN scenarios is depicted graphically 

in Fig. 6. According to the regression graphs, the MHD-RPN achieved the best results across 

all scenarios for the many criteria mentioned. A higher R-squared value in a regression plot 

denotes that the data points are nearer the regression line and that the regression line 

adequately fits the data. This indicates that the model does a better job of describing how the 

independent and dependent variables relate to one another. Fig. 7 shows the fitness curve for 

all scenarios in Case 1. The fitness curve analysis shows that there is no noise and that the 

trends for the actual and projected values are the same, proving that the data prediction model 

is efficient. 

 

  
Performance plot for Scenario 1 Performance plot for Scenario 2 

  
Performance plot for Scenario 3 Performance plot for Scenario 4 
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Performance plot for Scenario 5 

Figure 3. Performance or MSE plots for MHD-RPN 

 

  
Fitness plot for Scenario 1 Fitness plot for Scenario 2 

  
Fitness plot for Scenario 3 Fitness plot for Scenario 4 

 
Fitness plot for Scenario 5 

Figure 4. Error histogram for MHD-RPN. 

 



 Nonlinear Analysis of Levenberg-Marquardt Optimized... Aamra Urooj et al.  

www.josa.ro Physics Section 

928 

  
Fitness plot for Scenario 1 Fitness plot for Scenario 2 

  
Fitness plot for Scenario 3 Fitness plot for Scenario 4 

 
Training state plot for Scenario 5 

Figure 5. Training state Plot for MHD-RPN 
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Regression Plot for Scenario 1 Regression Plot for Scenario 2 

  
Regression Plot for Scenario 3 Regression Plot for Scenario 4 

 
Regression Plot for Scenario 5 

Figure 6. Regression Plot for MHD-RPN 

 

  
Fitness plot for Scenario 1 Fitness plot for Scenario 2 
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Fitness plot for Scenario 3 Fitness plot for Scenario 4 

 
Fitness plot for Scenario 5 

Figure 7. Fitting plot for MHD-RPN 

   

 

3.2. DISCUSSION ON THE TEMPERATURE AND CONCENTRATION PROFILES  

 

 

Figs. 8 and 9 show how    and    have an impact on temperature and concentration 

profiles. Although the concentration boundary layer thins with increases in    shown in Fig. 

8a, the thermal boundary layer thickens with an increase in    shown in Figure 8b. These 

findings suggest that the speed of mass transfer intensity tends to grow as    rises while 

decreasing the heat transfer rate. However,    has the effect of increasing both the thermal 

addition to the concentration boundary layers, as shown in Fig. 9 (a and b), which increases 

heat transfer and mass transfer rates. 

Figs. 8 and 9 are also included so that you can see how    and    affect the rates of 

mass and heat transmission. From a purely physical perspective, the Brownian motion causes 

the fluid particles to collide. As a result, the nanoparticles in suspension produce more kinetic 

energy when    rises, which raise the fluid's temperature and, in turn, create the 

thermophoresis force. Higher values of    thereby increasing fluid temperature and 

enhancing the fluid's concentration as a result. 

In Fig. 10, it is discussed how the thermal radiation parameter R affects the 

Temperature      and Concentration       profiles. Physically, the presence of thermal 

radiation causes the radiative heat flux to rise relative to the functional flow. The thickness of 

the boundary layer expands as a result of inclusion in  , increasing the temperature 
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distribution in the flow zone of   as the flow strength increases. Since a larger   is associated 

with greater temperature, this results in a thinner boundary layer, which reduces the fluid 

concentration near the surface. As shown in Fig. 11, the temperature profile decreases as the 

Prandtl number rises, whereas the concentration profile increases as the Prandtl number 

increases.  
 

 
a) 

 
b) 

Figure 8. a)     ; b)       profiles against   . 

 

 
a) 

 
b) 

Figure 9. a)     ; b)      profiles againt  t. 

 

 
a) 

 
b) 

Figure 10. a)     ; b)      profiles against  . 
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a) 

 
b) 

Figure 11. a)    ; b)      profiles against    

 

 

4. CONCLUSIONS 

 

 

This paper uses an ANN with the Levenberg-Marquardt optimization technique to 

investigate the interaction of thermophoresis diffusion and Brownian motion effects on MHD-

RPN flow adjacent to a shrinking sheet. The plots show that the Levenberg-Marquardt Back-

propagated prediction by MHD-RPN acceptably fits the model, and one can suitably modify 

the model by changing the various parameters that may improve the accuracy and efficacy of 

results by the aforementioned techniques.  

 The performance of the ANN model is validated by error histograms that are tightly 

clustered within the range of       to      , centered near the zero line. 

 Additionally, the model's high accuracy is confirmed by the mean square error (MSE), 

which falls between       and      . 

 Temperature distribution is higher, whereas the Concentration decays as the Brownian 

motion parameter Nb is increased. 

 The heat and mass transfer rates increased as the thermophoresis parameter Nt increased. 

But as the radiation parameter is raised, thermal and mass progress are constrained. 

 Temperature distribution and concentration are higher for the thermophoresis parameter 

  . 

 Concentration has maximum values for the Prandtl number and decays for the radiation 

parameter. 

 The temperature profile decreases as the Prandtl number rises. 

 The regression plots indicate that the results obtained from ANN and the Adam numerical 

solver are the same and compatible. 
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