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Abstract. Artificial neural networks (ANNs) have transformed fluid dynamics
modeling, enabling the analysis of complex phenomena with remarkable accuracy. This paper
uses an ANN with the Levenberg-Marquardt optimization technique to investigate the
interaction of thermophoresis diffusion and Brownian motion effects on
Magnetohydrodynamic Reiner-Philippoff nanofluid flow (MHD-RPN) adjacent to a shrinking
sheet. Numerical solutions are obtained by using the NDSolve solver within Mathematica,
resulting in a dataset that encompasses several scenarios via parameter modifications. This
data set, which contains input-output pairs, is used to train the NNs. The efficiency of the
suggested ANN methodology is shown by performance assessments using MSE, error
histograms, correlation, and regression plots. Graphs of temperature and concentration
profiles are shown for several MHD-RPN scenarios by variations of the parameters, i.e., the
thermophoresis parameter (Nt), Brownian Motion Parameter (Nb), Prandtl Number (Pr),
the Schmidt number (Sc), and the thermal radiation (R), respectively. Increasing Nb
increases temperature but decreases concentration, while increasing Nt improves heat and
mass transport. However, radiation and greater Prandtl numbers reduce temperature and
concentration. The model's effectiveness is evaluated through MSE, observed between 10
and 10™ across different scenarios, confirming the robustness and efficiency of the Al-driven
solution.

Keywords: Magnetohydrodynamic Reiner—Philippoff non-Newtonian nanofluid;
shrinking sheet; thermophoresis parameter; Brownian parameter; Levenberg-Marquardt
back-propagation.

1. INTRODUCTION

Rapid heat transfer has been a growing technical discipline for decades. Researchers
are employed to improve thermal conductivity and heat transfer rate. They are also attempting
to decrease pumping power, frictional loss, and pressure drop for the heat transfer fluid.
Nanofluid is a novel type of heat transfer fluid that has been designed to give superior thermal
characteristics for heat transfer. Nanofluid is created by dissolving a small amount of
nanoparticles in base fluids such as water, glycol, and others. It is worth noting that
Buongiorno [1] explored convective transport in a nanofluid to better understand the observed
heat transfer improvement under convective conditions. Buongiorno presented a novel model
based on basic fluid and nanoparticle relative velocities. He contended that in the deficiency
of turbulent effects, Brownian diffusion [2] and thermophoresis prevail. He created
conservation equations based on these two effects. Many scientists who wanted to consider
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using nanofluid in conjunction with different non-Newtonian fluids turned to this discovery as
their primary source of information. To mention a few, Saleem et al. [3], Waqas et al. [4] and
Mahat et al. [5] researched the electrically conducting nanofluid. The Reiner-Philippoff fluid
model has attracted attention recently because it can behave like a Newtonian fluid. Using the
Karman-Pohlhausen approach, Kapur and Gupta [6] examined the boundary layer equations
for Reiner-Philippoff fluid inside a channel. In the meantime, Reiner-Philippoff, Ellis,
Ostwald de Waele, generalized Bingham, and Prandtl Eyring fluid velocity profiles were
compared by Cavatorta and Tonini [7].

Applications in industry and technology require efficient, seamless work to achieve
the best performance. Pure (Newtonian) water is typically used as the cooling agent. Due to
their effectiveness and applicability, the usage of non-Newtonian fluids seems more and more
applicable in various operations [8]. Non-Newtonian fluids come in a wide variety of
varieties, each with unique properties. Shear-thickening fluids exhibit viscosity increases
proportionate to shear rate, whereas shear-reducing fluids exhibit Newtonian fluid behaviour
at extremely high shear rates. The Reiner-Philippoff model, one of the non-Newtonian class
of models, is more fascinating to study because it depicts the behavior of a Newtonian fluid
[9] at zero or large values of shear stress causes non-Newtonian behavior and affects other
values. The study of the RP model has attracted the attention of many academics due to its
significant role in engineering applications.

The study looked at the analysis of flows traveling over various geometries and their
various effects on the flow field [10]. Since its existence affects the pace of heat transfer,
including thermal radiation in the flow presents greater difficulties and substantial
contributions. Thermal radiation is useful in solar technologies [11], aircraft, medicine, and
spacecraft operations. Rosseland invented thermal radiation, and Ghosh, Mukhopadhyay,
Yashkun, and others have greatly expanded on his concepts [12], Agbaje et al. [13, 14], and
Muhammad et al. [15] fluid flow in MHD non-Newtonian, including fluids with nanoparticles
over a shrinking sheet, was investigated. Due to its capacity to affect fluid characteristics, the
influence of the magnetic field, also known as magnetohydrodynamics (MHD), is one of the
frequently taken into consideration effects in fluid flow investigations. The drag Lorentz force
is launched when MHD is present, which might prevent boundary layer separation. In a study
by Rashidi et al. [16], the analysis of the MHD's presence was emphasized. In addition,
Hussain et al. [17] and Sheikholeslami et al. carried out a study on MHD flow in the free
convection mode. Hagq et al. [18], on the other hand, explored the MHD flow by incorporating
the nanoparticles. Khan et al. [19, 20], Srinivasulu and Goud [21], Khashi'ie et al. [22], Zhang
et al. [23], all reported on further work on MHD flow. Additionally, Ashwinkumar et al. [24]
have reported on their investigation into MHD hybrid nanofluid flow over various geometries.
The research of the RPF model combined with nanofluid is innovative; however, it is
constrained and leaves several gaps that need to be filled. Therefore, the goal of this study is
to deepen our understanding of the unique properties of the Reiner-Philippoff fluid embedded
in thermophoresis and Brownian diffusion under MHD conditions.

With recent technology innovations, more contemporary and efficient controllers for
complicated processes are being built. The Artificial Neural Network (ANN) [25, 26] has
emerged as a viable alternative to the automatic control of nonlinear systems with many
inputs and outputs. These systems have proven their capacity to address a wide range of
operations, from simple applications to sophisticated industrial processes. To represent varied
applications in expanded sectors, a stochastic numerical computing solver was constructed
using the capabilities of evolutionary/swarming computing-based optimization methodologies
related to linear and nonlinear differentiation and neural network models for solving equations
[27,28]. Contemporary stochastic numerical computer solver implementations include
nonlinear circuits [29], atomic physics, thermodynamics, astrophysics,
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magnetohydrodynamics [30], haemoglobin, fluid dynamics [31], nanotechnology [32], and
random matrix models [33, 34]. All of the facts established the significance of synthetic
solutions based on intelligent algorithms (Al) developed research domain and studied the
latest algorithms for non-linear fluid can be helpful for finer analysis of complex dynamic
problems [35].

The objective of this research is to implement an ANN [36] model to analyze the
effect of MHD-RPN between shrinking sheets. To train, validate, and assess performance
valuation indicators, we used three multi-layer feed-forward networks using the back-
propagation LMM algorithmic program [31, 34, 37]. The ANN approach is a way of
processing data that is based on simulating the human brain. Models for forecasting and
evaluating are regularly made using it. Layers of several mutually interconnected neurons
make up an ANN. An ANN normally consists of three different sorts of layers: input, hidden,
and output. Outside sources provide information about the enquiry to the input layer. The
hidden layer(s) connect to other levels rather than the outside world. The result is sent outside
by the output layer. Each input neuron in the feed-forward ANN has a weight coefficient.
These weight coefficients are multiplied by the input signals to determine each neuron's input
signal, which is subsequently added. The network architecture is defined as the number of
hidden layers and hidden neurons. The input volume and network architecture are closely
connected. If the performance of the first layer is poor, it is recommended to start with one
hidden layer and work your way up to two hidden layers. The number of neurons in the
hidden layer will boost the network's power.

It has not yet been investigated how the MHD-RPN model uses an ANN model. Since
Brownian and thermophoresis parameter effects were taken into account, the originality of the
current work focused on the usefulness of the ANN approach. According to the results of the
ANN process, several parameters are investigated, and numerical results are provided. No
prior studies of this nature have been carried out, according to a thorough review of the
literature. Because it attempts to fill a vacuum in the corpus of knowledge in this field, this
study is significant. The results are presented and developed using graphs and numerical
benchmarks. Section 2 presents the mathematical model for the issue under investigation. In
section 3, the LMM approach is laid out. The effects of different factors on physical quantities
are covered in Section 4. Section 5 concludes.

2. MATHEMATICAL FORMULATION

The steady two-dimensional boundary layer flow of a Reiner-Philippoff nanofluid
across a declining surface is taken into account; it is assumed that the external pressure on the
1

plate is in the x -direction and that the base fluids contain nanoparticles. U, (x) = ax3
1
represents velocity with a > 0. The magnetic field B(x) = Byx ™3, where B, is the constant

. . L. . . 4 o*\ [OT*
magnetic strength. The radiative heat flux will be considered as q, = — (3k*) (W) and

T* = 4T3T — 3T;2. Here k* and o* represent the Stefan-Boltzmann constants and the mean
absorption, respectively. Brownian and thermophoresis diffusion Dy & D; effects are
engaged. The model used to illustrate the current issue underwent boundary layer
approximations first. Flow geometry for the thermophoresis diffusion and Brownian motion
effects on magnetohydrodynamic Reiner-Philippoff nanofluid flow adjacent to a shrinking
sheet is presented via Fig. 1, whereas Fig. 2 is constructed for the neural networks diagram.
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The controlling boundary layer equations are hence [38, 39]
ou av
axta =0 (1)
a_u _ T
oy - #oo+”0_—“°% ! (2)
1+()
u Lo _ 10T _gpa
ox ay  pdy p ! (3)
aT ar _ [ k 160°T3, \ 92T acaT Dy (BT)Z
Yox Tt oy (pCp * 3(pCp)k*> ay? J (DB dy oy + T \y/ )’ (4)
ac ac 8%c | Dt 8°T
u ox tv ay Dg 0y2 T 0y2 ' (5)
as originally viewed by subjected to the following boundary condition:
u=¢eu,x),v=y,x),T=T,, C=C,aty=0;
u—>0,T->Ty, C—Cypasy— . (6)

Here, we take constant values T, , C, While the ambient temperature T, and
nanoparticle fraction C,, have reached their maximum levels and are infinitesimally small.

2.1. SIMILARITY TRANSFORMATION

Study the similarity variables [40, 41]:

T —T, C—Co
W =Vavx?Pf(n), T = pVadvgm),0(n) = —— x(M) = ———, 1
T, — T Cp — Co

@ ™
=Xy
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with the stream function . Here:

0 dJ 2 1
= % = @), v = =50 = @B (S g m), @

v, (0) = =5 Vavx~3, ©)

with v = u./p, In the meantime, the constant mass flux parameter is represented by f(0) =
S. Here, S =0 and S > 0 Indicate the suction and impermeable instances. Then, one

succeeds:
S (Y +g° (10)
9=f"N"—=——=)
Y +tg
! 2 11 1 ! 11
g+ =5 =Mf =0, D
3 3
! (1+4R)9”+2 0’ + Nby'0' + Nt8'> = 0 (12)
Pri° "3 3/ X -
X'+ Sefy +300" =0, (13)
6(0) =1Lf(0)=S, x(0 =1, f'(0) =&f'(m) = 0,0 =0, x(n) = (14)
Oasn — oo.
where £ < 0 shows a shrinking sheet.
uc, v o Lo 40*T3 T4
Pr=—,Sc=—,M=—B3, A=—,R= Y = )
k Dg pa ° Hoo Kk 'V pVa3v (15)
6Dg(C,, — Cyp 6D (T, — Ty
wp 2 806 = C)  ODr(Ty ~ T
v VT,

2.2. METHODOLOGY

The method approximates the inherently non-linear nature of the MHD-RPN system
by initially reducing the governing partial differential equations (PDEs) to obtain a set of
ordinary differential equations (ODEs) by using a similarity transformation. An advanced
Adams numerical method is employed for generating the dataset required in the ANN-LMA
for training the neural networks. 'NDSolve' in Wolfram Mathematica is used to solve
equations of MHD-RPN using the Adam numerical solver. Then we shift the result from
Mathematica to MATLAB and select input from 0 to 20 with a step size of 100. The 'nftool’
algorithm, which is a useful tool in the MATLAB software package's neural networks (NN)
toolbox, is used to carry out the methodology described here for the suggested back-
propagated NN, and the Levenberg-Marquardt approach is used to determine the network
weights. The approach is divided into two sections: the first section contains the key
information needed to create a dataset for LM-NN, and the second section describes the steps
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taken to put that information into practice. This design of the neural network is the basis for
the configuration in Figs. 2a and 2b represent the overall flow chart of MHD-RPN. Since they
introduce non-linearity in the output of individual neurons, activation functions form a crucial
part of this architecture. Since it allows the network to view and comprehend complicated
patterns and relationships in the data, this non-linearity is necessary. In addition, by enabling
gradient-based weight and bias adjustments during training, activation functions assist the
back-propagation method. As a result, the method enhances the precision and stability of flow
measurements, particularly when non-Newtonian fluids are concerned or non-invasive
assessments of drilling fluids are being performed.
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Figure 2. a. Neural Network for MHD-RPN; b. Flow Chart of MHD-RPN.

Table 1. Constant parameter values

Nt Nb Pr R Sc M S Y A €

0.1 0.1 7 5 5 0.01 2.4 0.1 1.5 -1
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3. RESULTS AND DISCUSSION

3.1. ANN MODEL RESULTS

The NDSolve solver is used to create the reference data set in the Mathematica
program. Diagrams are used to graphically illustrate the numerical solutions that occur. Table
2 displays five scenarios with three cases for each scenario. For all NDSolve method
scenarios, the step size is 0.20, and the input range is 0 to 20. After creating the data set, the
RPN model is solved using the "nftool™ command. Figs. 3-7 show the MHD-RPN solution for
each scenario of Case 1 in the form of a performance plot, histogram plot, regression plot, and
training state and fitting plot. Figs. 3-7 show the plots of the Performance plot, Error
histogram, Regression, Training state, and. A regression plot is a statistical graph that depicts
the correlation between two variables.

Table 2. Variations of physical quantities of MHD-RPN.

. Physical Quantities

Scenarios Cases Nt Nb Pr Sc R
1 0.1 0.1 7 5 5

01 2 0.3 0.1 7 5 5
3 0.5 0.1 7 5 5

1 0.1 0.1 7 5 5

02 2 0.1 0.3 7 5 5
3 0.1 0.5 7 5 5

1 0.1 0.1 3 5 5

03 2 0.1 0.1 5 5 5
3 0.1 0.1 7 5 5

1 0.1 0.1 7 1 5

04 2 0.1 0.1 7 3 5
3 0.1 0.1 7 5 5

1 0.1 0.1 7 5 5

05 2 0.1 0.1 7 5 10
3 0.1 0.1 7 5 15

Fig. 3 shows the mean-squared error curves for training, testing, and validation of case
1 for all possible scenarios. The figure makes it clear that the best validation performance for
Case 1 of Scenario 1 is 7.55x10™, Scenario 2, the best validation performance is 3.52x10~°,
Scenario 3, the best validation performance is 7.47x10™"!, Scenario 4, the best validation
performance is 7.87x10™"!, Scenario 5, the best validation performance is 1.03x10™ in time
less than 5 sec in all. In a performance plot, the target variable's actual values are shown on
the horizontal axis, and the MHD-RPN model's predicted values are shown on the vertical
axis. The error histogram for case 1 across all five scenarios is displayed in Fig. 4. The
maximum values depicting the errors are roughly equal to zero, as can be seen from the plots
of the error histograms, which supports the validity of the method. The training state analysis
for Case 1 for all MHD-RPN scenarios is depicted graphically in Fig. 5. A balance of gradient
and mu values suggests that the neural network is making weight updates in a controlled and
efficient manner.

The criteria for training are 80%, validation is 10% and testing is 10%. Table 3 below
shows statistical results that are obtained after training the model on a given data set.
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Table 3. Performance of MHD-RPN.

Scenarios | Case Trainirl:g/;SE da?esting Performance | Gradient Mu 2}22‘:} Time
1 3.43x10%° | 2.31x10™° 7.55x10™ 9.9x10% | 1.00x10°% 310 04s
1 2 3.96x10%° | 8.40x10™° 7.21x107%° 9.9x10% | 1.00x10°% 15 <5s
3 3.38x10%° | 3.55x10™! 3.52x107 9.9x10% | 1.00x10°% 14 <5s
1 3.67x10™ | 1.47x10™° 3.52x10” 9.9x10% | 1.00x10°% 31 <5s
2 2 7.68x10%° | 1.27x10! 9.99x10™ 9.9x10% | 1.00x10°% 388 4s
3 2.22x10 | 3.13x10™%° 4.73x10%° 9.9x10% | 1.00x10°% 91 <5s
1 1.40x10" | 1.17x10™ 7.47x101 9.9x10% | 1.00x10°% 268 03s
3 2 2.44x10%° | 1.92x10! 4.87x10° 9.9x10% | 1.00x10°° 69 01s
3 4.08x10%° | 4.375x10° 6.99x10™ 9.9x10° | 1.00x10°° 17 <5s
1 3.20x10%° | 2.40x10™° 7.87x10™H 9.9x10% | 1.00x10°% 317 04s
4 2 1.62x10" | 2.20x10™° 2.11x107%° 9.9x10° | 1.00x10°° 64 <5s
3 4.09x10™° | 455x10™ 2.99x10™ 9.9x10° | 1.00x10°° 17 <5s
1 3.90x10™ | 7.05x10™° 1.03x10™%° 9.9x10° | 1.00x10°° 18 <5s
5 2 3.31x10% | 1.70x10™ 2.99x10™ 9.9x10° | 1.00x10°° 34 <5s
3 3.24x10%° | 4.17x10 2.99x10° 9.9x10° | 1.00x10°° 74 <5s

The regression analysis for Case 1 for all MHD-RPN scenarios is depicted graphically
in Fig. 6. According to the regression graphs, the MHD-RPN achieved the best results across
all scenarios for the many criteria mentioned. A higher R-squared value in a regression plot
denotes that the data points are nearer the regression line and that the regression line
adequately fits the data. This indicates that the model does a better job of describing how the
independent and dependent variables relate to one another. Fig. 7 shows the fitness curve for
all scenarios in Case 1. The fitness curve analysis shows that there is no noise and that the
trends for the actual and projected values are the same, proving that the data prediction model
is efficient.
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Figure 6. Regression Plot for MHD-RPN
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Figure 7. Fitting plot for MHD-RPN

3.2. DISCUSSION ON THE TEMPERATURE AND CONCENTRATION PROFILES

Figs. 8 and 9 show how Nb and Nt have an impact on temperature and concentration
profiles. Although the concentration boundary layer thins with increases in Nb shown in Fig.
8a, the thermal boundary layer thickens with an increase in Nb shown in Figure 8b. These
findings suggest that the speed of mass transfer intensity tends to grow as Nb rises while
decreasing the heat transfer rate. However, Nt has the effect of increasing both the thermal
addition to the concentration boundary layers, as shown in Fig. 9 (a and b), which increases
heat transfer and mass transfer rates.

Figs. 8 and 9 are also included so that you can see how Nb and Nt affect the rates of
mass and heat transmission. From a purely physical perspective, the Brownian motion causes
the fluid particles to collide. As a result, the nanoparticles in suspension produce more kinetic
energy when Nb rises, which raise the fluid's temperature and, in turn, create the
thermophoresis force. Higher values of Nt thereby increasing fluid temperature and
enhancing the fluid's concentration as a result.

In Fig. 10, it is discussed how the thermal radiation parameter R affects the
Temperature 8(n) and Concentration y(n) profiles. Physically, the presence of thermal
radiation causes the radiative heat flux to rise relative to the functional flow. The thickness of
the boundary layer expands as a result of inclusion in R, increasing the temperature
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distribution in the flow zone of R as the flow strength increases. Since a larger R is associated
with greater temperature, this results in a thinner boundary layer, which reduces the fluid
concentration near the surface. As shown in Fig. 11, the temperature profile decreases as the
Prandtl number rises, whereas the concentration profile increases as the Prandtl number
increases.
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Figure 8. a) 6(n); b) x(n) profiles against Nb.
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LOp 1.0k
X R=3,10,15 0.
0.8F 08 015
0.60¢ 0.6 010
- e _ 0.03
I 04 R=3,16,13 020 0.25 0301035 040
0.2 02 /
(.0F 0.0}t ! ! -
0 5 10 15 20 0 5 10 15 20
.l'lu‘ ”
a) b)

ISSN: 1844 — 9581

Figure 10. a) 8(n); b) x(n) profiles against R.
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4. CONCLUSIONS

This paper uses an ANN with the Levenberg-Marquardt optimization technique to
investigate the interaction of thermophoresis diffusion and Brownian motion effects on MHD-
RPN flow adjacent to a shrinking sheet. The plots show that the Levenberg-Marquardt Back-
propagated prediction by MHD-RPN acceptably fits the model, and one can suitably modify
the model by changing the various parameters that may improve the accuracy and efficacy of
results by the aforementioned techniques.

— The performance of the ANN model is validated by error histograms that are tightly
clustered within the range of 107°¢ to 1078, centered near the zero line.

— Additionally, the model's high accuracy is confirmed by the mean square error (MSE),
which falls between 107°9 and 10712,

— Temperature distribution is higher, whereas the Concentration decays as the Brownian
motion parameter Nb is increased.

— The heat and mass transfer rates increased as the thermophoresis parameter Nt increased.
But as the radiation parameter is raised, thermal and mass progress are constrained.

— Temperature distribution and concentration are higher for the thermophoresis parameter
Nt.

— Concentration has maximum values for the Prandtl number and decays for the radiation
parameter.

— The temperature profile decreases as the Prandtl number rises.

— The regression plots indicate that the results obtained from ANN and the Adam numerical
solver are the same and compatible.
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